Department of Physiology & Cell Biology and Frick Center for Heart Failure and Arrhythmia The Ohio State University Wexner Medical Center Columbus OH.
Davis Heart & Lung Research InstituteThe Ohio State University Wexner Medical Center Columbus OH.
J Am Heart Assoc. 2020 Oct 20;9(19):e017789. doi: 10.1161/JAHA.120.017789. Epub 2020 Oct 2.
Background Atrial fibrillation (AF) driver mechanisms are obscured to clinical multielectrode mapping approaches that provide partial, surface-only visualization of unstable 3-dimensional atrial conduction. We hypothesized that transient modulation of refractoriness by pharmacologic challenge during multielectrode mapping improves visualization of hidden paths of reentrant AF drivers for targeted ablation. Methods and Results Pharmacologic challenge with adenosine was tested in ex vivo human hearts with a history of AF and cardiac diseases by multielectrode and high-resolution subsurface near-infrared optical mapping, integrated with 3-dimensional structural imaging and heart-specific computational simulations. Adenosine challenge was also studied on acutely terminated AF drivers in 10 patients with persistent AF. Ex vivo, adenosine stabilized reentrant driver paths within arrhythmogenic fibrotic hubs and improved visualization of reentrant paths, previously seen as focal or unstable breakthrough activation pattern, for targeted AF ablation. Computational simulations suggested that shortening of atrial refractoriness by adenosine may (1) improve driver stability by annihilating spatially unstable functional blocks and tightening reentrant circuits around fibrotic substrates, thus unmasking the common reentrant path; and (2) destabilize already stable reentrant drivers along fibrotic substrates by accelerating competing fibrillatory wavelets or secondary drivers. In patients with persistent AF, adenosine challenge unmasked hidden common reentry paths (9/15 AF drivers, 41±26% to 68±25% visualization), but worsened visualization of previously visible reentry paths (6/15, 74±14% to 34±12%). AF driver ablation led to acute termination of AF. Conclusions Our ex vivo to in vivo human translational study suggests that transiently altering atrial refractoriness can stabilize reentrant paths and unmask arrhythmogenic hubs to guide targeted AF driver ablation treatment.
心房颤动(AF)的驱动机制对于提供不稳定的三维心房传导的部分表面可视化的临床多电极映射方法来说是隐藏的。我们假设,在多电极映射过程中通过药物挑战来短暂改变不应期,可以改善对隐匿性折返性 AF 驱动因素的可视化,从而实现有针对性的消融。
通过多电极和高分辨率的表面近红外光学映射,结合三维结构成像和心脏特定的计算模拟,在有 AF 和心脏疾病病史的离体人心肌中测试了腺苷对药物挑战的反应。还在 10 例持续性 AF 患者中研究了急性终止的 AF 驱动因素中的腺苷挑战。在体外,腺苷稳定了心律失常纤维性中心内的折返驱动路径,并改善了折返路径的可视化,这些路径以前被视为局灶性或不稳定的突破激活模式,用于有针对性的 AF 消融。计算模拟表明,腺苷缩短心房不应期可能(1)通过消除空间不稳定的功能块并围绕纤维基质收紧折返回路,从而消除常见的折返路径,从而提高驱动稳定性;(2)通过加速竞争性的颤动波或次级驱动来使已经稳定的折返驱动不稳定。在持续性 AF 患者中,腺苷挑战揭示了隐匿性的共同折返路径(9/15 AF 驱动因素,41±26%至 68±25%的可视化),但使先前可见的折返路径的可视化变差(6/15,74±14%至 34±12%)。AF 驱动消融导致 AF 急性终止。
我们的从离体到体内的人类转化研究表明,短暂改变心房不应期可以稳定折返路径,并揭示心律失常的中心,以指导有针对性的 AF 驱动消融治疗。