Division of Cardiology, University of Washington, Seattle, Washington, USA.
Department of Bioengineering, University of Washington, Seattle, Washington, USA.
JACC Clin Electrophysiol. 2023 Oct;9(10):2149-2162. doi: 10.1016/j.jacep.2023.06.015. Epub 2023 Aug 30.
Computational models of fibrosis-mediated, re-entrant left atrial (LA) arrhythmia can identify possible substrate for persistent atrial fibrillation (AF) ablation. Contemporary models use a 1-size-fits-all approach to represent electrophysiological properties, limiting agreement between simulations and patient outcomes.
The goal of this study was to test the hypothesis that conduction velocity (ϴ) modulation in persistent AF models can improve simulation agreement with clinical arrhythmias.
Patients with persistent AF (n = 37) underwent ablation and were followed up for ≥2 years to determine post-ablation outcomes: AF, atrial flutter (AFL), or no recurrence. Patient-specific LA models (n = 74) were constructed using pre-ablation and ≥90 days' post-ablation magnetic resonance imaging data. Simulated pacing gauged in silico arrhythmia inducibility due to AF-like rotors or AFL-like macro re-entrant tachycardias. A physiologically plausible range of ϴ values (±10 or 20% vs. baseline) was tested, and model/clinical agreement was assessed.
Fifteen (41%) patients had a recurrence with AF and 6 (16%) with AFL. Arrhythmia was induced in 1,078 of 5,550 simulations. Using baseline ϴ, model/clinical agreement was 46% (34 of 74 models), improving to 65% (48 of 74) when any possible ϴ value was used (McNemar's test, P = 0.014). ϴ modulation improved model/clinical agreement in both pre-ablation and post-ablation models. Pre-ablation model/clinical agreement was significantly greater for patients with extensive LA fibrosis (>17.2%) and an elevated body mass index (>32.0 kg/m).
Simulations in persistent AF models show a 41% relative improvement in model/clinical agreement when ϴ is modulated. Patient-specific calibration of ϴ values could improve model/clinical agreement and model usefulness, especially in patients with higher body mass index or LA fibrosis burden. This could ultimately facilitate better personalized modeling, with immediate clinical implications.
纤维化介导的折返性左心房(LA)心律失常的计算模型可以识别持续性心房颤动(AF)消融的可能基质。当代模型采用一刀切的方法来表示电生理特性,限制了模拟与患者结果之间的一致性。
本研究旨在测试这样一个假设,即持续性 AF 模型中的传导速度(ϴ)调制可以提高模拟与临床心律失常的一致性。
37 例持续性 AF 患者接受消融治疗,并随访至少 2 年以确定消融后的结果:AF、心房扑动(AFL)或无复发。使用消融前和消融后≥90 天的磁共振成像数据构建了 74 例患者特异性 LA 模型。模拟起搏用于评估由于 AF 样转子或 AFL 样大折返性心动过速引起的心律失常的可诱导性。测试了生理上合理的ϴ值范围(±10 或 20%与基线相比),并评估了模型/临床的一致性。
15 例(41%)患者出现 AF 复发,6 例(16%)患者出现 AFL 复发。在 5550 次模拟中,有 1078 次诱发出心律失常。使用基线ϴ时,模型/临床的一致性为 46%(74 个模型中的 34 个),当使用任何可能的ϴ值时,一致性提高到 65%(74 个模型中的 48 个)(McNemar 检验,P=0.014)。在消融前和消融后模型中,ϴ 调制都提高了模型/临床的一致性。在 LA 纤维化程度较大(>17.2%)和 BMI 较高(>32.0kg/m)的患者中,预消融模型/临床的一致性显著更高。
在持续性 AF 模型中,当ϴ 调制时,模型/临床的一致性相对提高了 41%。ϴ 值的患者特异性校准可以提高模型/临床的一致性和模型的有用性,特别是在 BMI 较高或 LA 纤维化负荷较大的患者中。这最终可以促进更好的个性化建模,并立即产生临床影响。