Yan Yichao, Vaid Thomas P, Sanford Melanie S
Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States.
J Am Chem Soc. 2020 Oct 14;142(41):17564-17571. doi: 10.1021/jacs.0c07464. Epub 2020 Oct 2.
This Article describes the development of 1,2-bis(diisopropylamino)-3-cyclopropenylium-functionalized (DAC-functionalized) benzene derivatives as high-potential catholytes for non-aqueous redox flow batteries. Density functional theory (DFT) calculations predict that the oxidation potentials (in CHCN) of various DAC-benzene derivatives will range from +0.96 to +1.64 V vs Fc, depending upon the substituents on the benzene ring. To test these predictions, a set of eight DAC-arene derivatives were synthesized and evaluated electrochemically. The molecule 1-DAC-4--butyl-2-methoxy-5-pentafluoropropoxybenzene was found to offer the optimal balance of high redox potential ( = +1.19 V vs Fc) and charge-discharge cycling stability (with 92% capacity retention over 116 h of cycling at 0.3 M concentration in a symmetrical flow cell). This optimal derivative was successfully deployed as a catholyte in a non-aqueous redox flow cell with butyl viologen as the anolyte to yield a 2.0 V battery.
本文描述了1,2-双(二异丙基氨基)-3-环丙烯基官能化(DAC官能化)苯衍生物作为非水氧化还原液流电池高潜力阴极电解液的研发情况。密度泛函理论(DFT)计算预测,各种DAC-苯衍生物的氧化电位(在CHCN中)相对于二茂铁将在+0.96至+1.64 V范围内,这取决于苯环上的取代基。为了验证这些预测,合成了一组八种DAC-芳烃衍生物并进行了电化学评估。发现分子1-DAC-4-丁基-2-甲氧基-5-五氟丙氧基苯具有高氧化还原电位(相对于二茂铁为+1.19 V)和充放电循环稳定性的最佳平衡(在对称液流电池中0.3 M浓度下循环116小时后容量保持率为92%)。这种最佳衍生物成功地用作非水氧化还原液流电池的阴极电解液,以丁基紫精作为阳极电解液,制成了一个2.0 V的电池。