Pence Michael A, Rodríguez Oliver, Lukhanin Nikita G, Schroeder Charles M, Rodríguez-López Joaquín
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois61801, United States.
ACS Meas Sci Au. 2022 Nov 1;3(1):62-72. doi: 10.1021/acsmeasuresciau.2c00054. eCollection 2023 Feb 15.
Characterizing the decomposition of electrogenerated species in solution is essential for applications involving electrosynthesis, homogeneous electrocatalysis, and energy storage with redox flow batteries. In this work, we present an automated, multiplexed, and highly robust platform for determining the rate constant of chemical reaction steps following electron transfer, known as the EC mechanism. We developed a generation-collection methodology based on microfabricated interdigitated electrode arrays (IDAs) with variable gap widths on a single device. Using a combination of finite-element simulations and statistical analysis of experimental data, our results show that the natural logarithm of collection efficiency is linear with respect to gap width, and this quantitative analysis is used to determine the decomposition rate constant of the electrogenerated species ( ). The integrated IDA method is used in a series of experiments to measure values between ∼0.01 and 100 s in aqueous and nonaqueous solvents and at concentrations as high as 0.5 M of the redox-active species, conditions that are challenging to address using standard methods based on conventional macroelectrodes. The versatility of our approach allows for characterization of a wide range of reactions including intermolecular cyclization, hydrolysis, and the decomposition of candidate molecules for redox flow batteries at variable concentration and water content. Overall, this new experimental platform presents a straightforward automated method to assess the degradation of redox species in solution with sufficient flexibility to enable high-throughput workflows.
表征溶液中电生成物种的分解对于涉及电合成、均相电催化和氧化还原液流电池储能的应用至关重要。在这项工作中,我们展示了一个自动化、多路复用且高度稳健的平台,用于确定电子转移后化学反应步骤的速率常数,即所谓的EC机制。我们基于在单个器件上具有可变间隙宽度的微加工叉指电极阵列(IDA)开发了一种生成-收集方法。通过有限元模拟和实验数据的统计分析相结合,我们的结果表明收集效率的自然对数与间隙宽度呈线性关系,并且这种定量分析用于确定电生成物种的分解速率常数( )。集成的IDA方法用于一系列实验,以测量在水性和非水性溶剂中以及氧化还原活性物种浓度高达0.5 M的条件下,值在~0.01至100 s之间,这些条件使用基于传统宏观电极的标准方法难以解决。我们方法的通用性允许对广泛的反应进行表征,包括分子内环化、水解以及氧化还原液流电池候选分子在可变浓度和含水量下的分解。总体而言,这个新的实验平台提供了一种直接的自动化方法来评估溶液中氧化还原物种的降解,具有足够的灵活性以实现高通量工作流程。