文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用社交媒体大数据作为南非新型 HIV 监测工具。

Use of social media big data as a novel HIV surveillance tool in South Africa.

机构信息

Human and Social Development, Human Sciences Research Council, Pietermaritzburg, KwaZulu Natal, South Africa.

Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, Gauteng, South Africa.

出版信息

PLoS One. 2020 Oct 2;15(10):e0239304. doi: 10.1371/journal.pone.0239304. eCollection 2020.


DOI:10.1371/journal.pone.0239304
PMID:33006979
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7531824/
Abstract

Sub-Saharan Africa has been heavily impacted by the HIV/AIDS epidemic. Social data (e.g., social media, internet search, wearable device, etc) show great promise assisting in public health and HIV surveillance. However, research on this topic has primarily focused in higher resource settings, such as the United States. It is especially important to study the prevalence and potential use of these data sources and tools in low- and middle-income countries (LMIC), such as Sub-Saharan Africa, which have been heavily impacted by the HIV epidemic, to determine the feasibility of using these technologies as surveillance and intervention tools. Accordingly, we 1) described the prevalence and characteristics of various social technologies within South Africa, 2) using Twitter, Instagram, and YouTube as a case study, analyzed the prevalence and patterns of social media use related to HIV risk in South Africa, and 3) mapped and statistically tested differences in HIV-related social media posts within regions of South Africa. Geocoded data were collected over a three-week period in 2018 (654,373 tweets, 90,410 Instagram posts and 14,133 YouTube videos with 1,121 comments). Of all tweets, 4,524 (0.7%) were found to related to HIV and AIDS. The percentage was similar for Instagram 95 (0.7%) but significantly lower for YouTube 18 (0.1%). We found regional differences in prevalence and use of social media related to HIV. We discuss the implication of data from these technologies in surveillance and interventions within South Africa and other LMICs.

摘要

撒哈拉以南非洲深受艾滋病毒/艾滋病的影响。社会数据(例如社交媒体、互联网搜索、可穿戴设备等)在公共卫生和艾滋病毒监测方面具有很大的应用潜力。然而,这一主题的研究主要集中在资源较丰富的环境中,例如美国。在受艾滋病毒流行影响严重的低收入和中等收入国家(LMIC),如撒哈拉以南非洲,研究这些数据源和工具的流行程度及其潜在用途尤为重要,以确定这些技术作为监测和干预工具的可行性。因此,我们 1)描述了南非各种社会技术的流行程度和特征,2)以 Twitter、Instagram 和 YouTube 为例,分析了与南非艾滋病毒风险相关的社交媒体使用的流行程度和模式,3)绘制并统计测试了南非各地区与艾滋病毒相关的社交媒体帖子的差异。2018 年的三周时间内收集了地理标记数据(654373 条推文、90410 条 Instagram 帖子和 14133 条 YouTube 视频,其中有 1121 条评论)。在所有推文中,有 4524 条(0.7%)与艾滋病毒和艾滋病有关。Instagram 的比例相似,为 95(0.7%),但 YouTube 的比例明显较低,为 18(0.1%)。我们发现与艾滋病毒相关的社交媒体的流行程度和使用存在区域差异。我们讨论了这些技术的数据在南非和其他 LMIC 中进行监测和干预的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/0908ee3d9e53/pone.0239304.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/28b669b08e83/pone.0239304.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/5bedad39c7af/pone.0239304.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/97904a26132b/pone.0239304.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/0908ee3d9e53/pone.0239304.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/28b669b08e83/pone.0239304.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/5bedad39c7af/pone.0239304.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/97904a26132b/pone.0239304.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df0/7531824/0908ee3d9e53/pone.0239304.g004.jpg

相似文献

[1]
Use of social media big data as a novel HIV surveillance tool in South Africa.

PLoS One. 2020-10-2

[2]
Big Data, Natural Language Processing, and Deep Learning to Detect and Characterize Illicit COVID-19 Product Sales: Infoveillance Study on Twitter and Instagram.

JMIR Public Health Surveill. 2020-8-25

[3]
Harnessing digital data and data science to achieve 90-90-90 goals to end the HIV epidemic.

Curr Opin HIV AIDS. 2019-11

[4]
The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis.

PLoS Med. 2018-3-1

[5]
Pre-exposure Prophylaxis (PrEP) Information on Instagram: Content Analysis.

JMIR Public Health Surveill. 2021-7-27

[6]
Substantial utilization of Facebook, Twitter, YouTube, and Instagram in the prostate cancer community.

World J Urol. 2018-3-9

[7]
Methods of using real-time social media technologies for detection and remote monitoring of HIV outcomes.

Prev Med. 2014-6

[8]
Social Media Monitoring of Discrimination and HIV Testing in Brazil, 2014-2015.

AIDS Behav. 2017-7

[9]
Identification and characterization of tweets related to the 2015 Indiana HIV outbreak: A retrospective infoveillance study.

PLoS One. 2020-8-26

[10]
Images of Little Cigars and Cigarillos on Instagram Identified by the Hashtag #swisher: Thematic Analysis.

J Med Internet Res. 2017-7-14

引用本文的文献

[1]
Systematic review of infodemiology studies using artificial intelligence: social media posts on HIV preexposure prophylaxis.

AIDS. 2025-7-15

[2]
What social media analyses can tell us about Ghanaian women's concerns during pregnancy.

Front Digit Health. 2025-2-13

[3]
Challenges and Opportunities in Big Data Science to Address Health Inequities and Focus the HIV Response.

Curr HIV/AIDS Rep. 2024-8

[4]
Utilization of Social Media for the Prevention and Control of HIV/AIDS: A Scoping Review.

J Multidiscip Healthc. 2024-5-21

[5]
Using geospatial social media data for infectious disease studies: a systematic review.

Int J Digit Earth. 2023

[6]
Digital Epidemiological Approaches in HIV Research: a Scoping Methodological Review.

Curr HIV/AIDS Rep. 2023-12

[7]
Unsupervised Machine Learning to Detect and Characterize Barriers to Pre-exposure Prophylaxis Therapy: Multiplatform Social Media Study.

JMIR Infodemiology. 2022-4-28

[8]
Using Twitter Data Analysis to Understand the Perceptions, Awareness, and Barriers to the Wide Use of Pre-Exposure Prophylaxis in the United States.

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022-12

[9]
Reliability of COVID-19 data: An evaluation and reflection.

PLoS One. 2022

[10]
The role of social media in monitoring COVID-19 vaccine uptake.

J Eval Clin Pract. 2022-8

本文引用的文献

[1]
In-Home Passive Sensor Data Collection and Its Implications for Social Media Research: Perspectives of Community Women in Rural South Africa.

J Empir Res Hum Res Ethics. 2020

[2]
Healthcare in the Age of Interoperability: The Promise of Fast Healthcare Interoperability Resources.

IEEE Pulse. 2018

[3]
Using search engine big data for predicting new HIV diagnoses.

PLoS One. 2018-7-12

[4]
Using Search Engine Data as a Tool to Predict Syphilis.

Epidemiology. 2018-7

[5]
Concurrence of big data analytics and healthcare: A systematic review.

Int J Med Inform. 2018-3-26

[6]
Big Data and Machine Learning in Health Care.

JAMA. 2018-4-3

[7]
Ethical Issues in Social Media Research for Public Health.

Am J Public Health. 2018-1-18

[8]
Using social media as a tool to predict syphilis.

Prev Med. 2018-4

[9]
Social Media Interventions to Promote HIV Testing, Linkage, Adherence, and Retention: Systematic Review and Meta-Analysis.

J Med Internet Res. 2017-11-24

[10]
An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments.

Sensors (Basel). 2017-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索