Fetcho J R
Brain Res. 1987 Jul;434(3):243-80. doi: 10.1016/0165-0173(87)90001-4.
In most anamniotes the axial musculature is myomeric and is functionally subdivided into superficial red and deep white muscle. In those anamniotes that have been studied the organization of the motor column is related to this functional subdivision. The motoneurons innervating red and white muscle differ in size, distribution in the motor column, and developmental history. There is no obvious topographic relationship between the location of motoneurons in the motor column and the dorsoventral location of the muscle they innervate in the myomeres; epaxial motoneurons are not segregated from hypaxial ones. Among amniotes, the myomeres divide to form a number of discrete muscles that may be complexly arranged. This breakup of the musculature is correlated with a subdivision of the motor column into discrete motor pools serving the different muscles. Unlike anamniotes, the motor pools are topographically organized. The epaxial pools are segregated from hypaxial ones, and within the epaxial and hypaxial pools the location of motoneurons innervating any particular muscle is related to the location of the muscle's precursor in the embryonic muscle masses. Thus adjacent motor pools innervate muscles arising from adjacent positions in the myotome. These dramatic differences between the motor columns in anamniotes and amniotes imply that the medial motor column has undergone a major restructuring during the evolution of vertebrates. The available evidence--which is tentative because of the few species that have been studied--suggests that a topographically organized motor column was absent in early vertebrates. A motor column/myotome map appears to have arisen just prior to, or in conjunction with the origin of amniotic vertebrates. The details of this map were conserved in different amniotes in spite of major structural and functional changes in the musculature. The map may be important for the proper control of the many muscles arising from the myotomes in amniotes because it facilitates the development and evolution of motor systems in which anatomically and functionally different muscles have spatially separate motor pools in the cord.
在大多数无羊膜动物中,轴肌是分节的,并且在功能上可细分为浅层红色肌肉和深层白色肌肉。在已研究的那些无羊膜动物中,运动柱的组织与这种功能细分有关。支配红色和白色肌肉的运动神经元在大小、在运动柱中的分布以及发育史上存在差异。运动柱中运动神经元的位置与它们在肌节中所支配肌肉的背腹位置之间没有明显的拓扑关系;轴上运动神经元与轴下运动神经元并未分离。在羊膜动物中,肌节分裂形成许多离散的肌肉,这些肌肉的排列可能很复杂。这种肌肉组织的分解与运动柱细分为服务于不同肌肉的离散运动池相关。与无羊膜动物不同,运动池是按拓扑方式组织的。轴上运动池与轴下运动池分离,并且在轴上和轴下运动池内,支配任何特定肌肉的运动神经元的位置与该肌肉在胚胎肌肉团中的前体位置有关。因此,相邻的运动池支配来自肌节中相邻位置的肌肉。无羊膜动物和羊膜动物运动柱之间的这些显著差异意味着,在脊椎动物的进化过程中,内侧运动柱经历了重大的重组。现有证据——由于所研究的物种较少,这些证据是初步的——表明早期脊椎动物中不存在按拓扑方式组织的运动柱。运动柱/肌节图谱似乎是在羊膜脊椎动物起源之前或与之同时出现的。尽管肌肉组织发生了重大的结构和功能变化,但该图谱的细节在不同的羊膜动物中得以保留。该图谱对于正确控制羊膜动物中源自肌节的众多肌肉可能很重要,因为它促进了运动系统的发育和进化,在这种运动系统中,解剖学和功能上不同的肌肉在脊髓中有空间上分开的运动池。