Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France.
Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France.
Trends Biotechnol. 2021 May;39(5):488-504. doi: 10.1016/j.tibtech.2020.08.010. Epub 2020 Sep 29.
Metabolic engineering (ME) aims to develop efficient microbial cell factories that can produce a wide variety of valuable compounds, ideally at the highest yield and from various feedstocks. We summarize recent developments in ME methods for tailoring different yeast cell factories (YCFs). In particular, we highlight the most timely and cutting-edge molecular tools and strategies for biosynthetic pathway optimization (including genome-editing tools), combinatorial transcriptional and post-transcriptional engineering (cis/trans regulators), dynamic control of metabolic fluxes (e.g., rewiring of primary metabolism), and spatial reconfiguration of metabolic pathways. Finally, we discuss challenges and perspectives for adaptive laboratory evolution (ALE) of yeast to advance ME of microbial cell factories.
代谢工程(ME)旨在开发高效的微生物细胞工厂,以生产各种有价值的化合物,理想情况下,其产量最高,且可利用各种原料。我们总结了 ME 方法在定制不同酵母细胞工厂(YCF)方面的最新进展。特别是,我们重点介绍了最及时和最先进的分子工具和策略,用于生物合成途径的优化(包括基因组编辑工具)、组合转录和转录后工程(顺式/反式调节剂)、代谢通量的动态控制(例如,主代谢的重新布线)以及代谢途径的空间重构。最后,我们讨论了通过适应性实验室进化(ALE)来推进微生物细胞工厂的 ME 所面临的挑战和展望。