School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK.
Institute of Bioengineering, Queen Mary University of London, Mile End Road, E1 4NS London, UK.
Sci Adv. 2020 Oct 2;6(40). doi: 10.1126/sciadv.abb3298. Print 2020 Oct.
Bioengineered three-dimensional (3D) matrices expand our experimental repertoire to study tumor growth and progression in a biologically relevant, yet controlled, manner. Here, we used peptide amphiphiles (PAs) to coassemble with and organize extracellular matrix (ECM) proteins producing tunable 3D models of the tumor microenvironment. The matrix was designed to mimic physical and biomolecular features of tumors present in patients. We included specific epitopes, PA nanofibers, and ECM macromolecules for the 3D culture of human ovarian cancer, endothelial, and mesenchymal stem cells. The multicellular constructs supported the formation of tumor spheroids with extensive F-actin networks surrounding the spheroids, enabling cell-cell communication, and comparative cell-matrix interactions and encapsulation response to those observed in Matrigel. We conducted a proof-of-concept study with clinically used chemotherapeutics to validate the functionality of the multicellular constructs. Our study demonstrates that peptide-protein coassembling matrices serve as a defined model of the multicellular tumor microenvironment of primary ovarian tumors.
生物工程三维 (3D) 矩阵扩展了我们的实验范围,可用于以生物学上相关但可控的方式研究肿瘤的生长和进展。在这里,我们使用肽两亲物 (PAs) 与细胞外基质 (ECM) 蛋白共组装和组织,从而产生可调节的肿瘤微环境 3D 模型。该基质旨在模拟患者体内存在的肿瘤的物理和生物分子特征。我们包含了特定的表位、PA 纳米纤维和 ECM 大分子,用于三维培养人卵巢癌细胞、内皮细胞和间充质干细胞。这些多细胞构建体支持肿瘤球体的形成,球体周围有广泛的 F-肌动蛋白网络,从而实现细胞间通讯以及与细胞基质的相互作用,并可比较观察到的 Matrigel 中的相互作用和封装反应。我们用临床使用的化疗药物进行了概念验证研究,以验证多细胞构建体的功能。我们的研究表明,肽-蛋白共组装基质可作为原发性卵巢肿瘤的多细胞肿瘤微环境的明确模型。