Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany.
Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
Biophys J. 2020 Oct 20;119(8):1590-1605. doi: 10.1016/j.bpj.2020.07.044. Epub 2020 Sep 16.
We present a minimal model to study the effects of pH on liquid phase separation of macromolecules. Our model describes a mixture composed of water and macromolecules that exist in three different charge states and have a tendency to phase separate. This phase separation is affected by pH via a set of chemical reactions describing protonation and deprotonation of macromolecules, as well as self-ionization of water. We consider the simple case in which interactions are captured by Flory-Huggins interaction parameters corresponding to Debye screening lengths shorter than a nanometer, which is relevant to proteins inside biological cells under physiological conditions. We identify the conjugate thermodynamic variables at chemical equilibrium and discuss the effective free energy at fixed pH. First, we study phase diagrams as a function of macromolecule concentration and temperature at the isoelectric point of the macromolecules. We find a rich variety of phase diagram topologies, including multiple critical points, triple points, and first-order transition points. Second, we change the pH relative to the isoelectric point of the macromolecules and study how phase diagrams depend on pH. We find that these phase diagrams as a function of pH strongly depend on whether oppositely charged macromolecules or neutral macromolecules have a stronger tendency to phase separate. One key finding is that we predict the existence of a reentrant behavior as a function of pH. In addition, our model predicts that the region of phase separation is typically broader at the isoelectric point. This model could account for both in vitro phase separation of proteins as a function of pH and protein phase separation in yeast cells for pH values close to the isoelectric point of many cytosolic proteins.
我们提出了一个最小模型来研究 pH 值对大分子液相分离的影响。我们的模型描述了由水和大分子组成的混合物,它们存在三种不同的电荷状态,并且有相分离的趋势。这种相分离受 pH 值的影响,通过一组描述大分子质子化和去质子化以及水自电离的化学反应来实现。我们考虑了一个简单的情况,其中相互作用由 Flory-Huggins 相互作用参数捕获,这些参数对应于小于纳米的 Debye 屏蔽长度,这与生理条件下生物细胞内的蛋白质有关。我们确定了化学平衡时的共轭热力学变量,并讨论了固定 pH 值时的有效自由能。首先,我们研究了在大分子等电点处大分子浓度和温度作为函数的相图。我们发现了多种相图拓扑结构,包括多个临界点、三重点和一级相变点。其次,我们改变了 pH 值相对于大分子的等电点,并研究了相图如何随 pH 值变化。我们发现,这些 pH 值作为函数的相图强烈依赖于带相反电荷的大分子或中性大分子相分离的趋势更强。一个关键的发现是,我们预测了作为 pH 值函数的重入行为的存在。此外,我们的模型还预测,在等电点处相分离区域通常更宽。该模型可以解释体外蛋白质随 pH 值的相分离以及许多胞质蛋白等电点附近酵母细胞中蛋白质的相分离。