Suppr超能文献

使用贝叶斯统计打破百分比记忆保持上限。

Breaking the Percent Memory Retention Ceiling using Bayesian Statistics.

机构信息

Moss Rehabilitation Research Institute, 50 Township Line Road, Suite 100, Elkins Park, PA 19027, USA.

出版信息

J Int Neuropsychol Soc. 2021 Apr;27(4):396-400. doi: 10.1017/S1355617720000892. Epub 2020 Oct 5.

Abstract

OBJECTIVES

Neuropsychological tests of episodic memory often include a measure of memory retention to facilitate the diagnosis of memory disorders. However, the traditional percent retention (PR) score has limited interpretability when smaller amounts of information are both initially learned and later recalled, creating a pseudo-ceiling effect. To improve psychometrics of PR, we investigated a scoring procedure that incorporates levels of certainty into estimates of memory retention based on learning level.

METHODS

Word-list recall data from adults with traumatic brain injury were modeled using a uniform prior in the Bayesian framework. From the resultant posterior probability distributions, we derived a measure referred to as retention probability (RPr), which distinguishes the retention of relatively good and poor learners. PR and RPr scores were compared on their distributional properties and associations with theoretically related memory measures.

RESULTS

Significant distributional differences between PR and RPr were observed. RPr removed the conspicuous ceiling of PR, resulting in stronger correlational and predictive relationships with other memory measures.

CONCLUSION

A Bayesian procedure for quantifying memory retention has psychometric advantages and potentially widespread applicability for measuring the change in behavioral features over time. Future directions are briefly discussed. A sample RPr calculator is provided for interactive exploration of the method.

摘要

目的

神经心理学的情景记忆测试通常包括记忆保留的衡量,以帮助诊断记忆障碍。然而,当最初学习和后来回忆的信息量较小时,传统的百分比保留(PR)分数的解释力有限,造成一种虚假的上限效应。为了提高 PR 的心理计量学,我们研究了一种评分程序,该程序基于学习水平,将确定性水平纳入对记忆保留的估计中。

方法

使用贝叶斯框架中的一致先验对创伤性脑损伤成年人的单词列表回忆数据进行建模。从得到的后验概率分布中,我们得出了一个称为保留概率(RPr)的度量,它区分了相对较好和较差学习者的保留情况。比较了 PR 和 RPr 分数在分布特性和与理论上相关的记忆测量方面的关联。

结果

观察到 PR 和 RPr 之间存在显著的分布差异。RPr 消除了 PR 的明显上限,从而与其他记忆测量指标之间建立了更强的相关性和预测关系。

结论

用于量化记忆保留的贝叶斯程序具有心理计量学优势,并且具有广泛的潜在应用,可用于测量行为特征随时间的变化。简要讨论了未来的方向。提供了一个示例 RPr 计算器,用于交互探索该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验