Suppr超能文献

在存在时空不确定性的情况下对细支气管炎发病率比例进行建模。

Modeling Bronchiolitis Incidence Proportions in the Presence of Spatio-Temporal Uncertainty.

作者信息

Heaton Matthew J, Berrett Candace, Pugh Sierra, Evans Amber, Sloan Chantel

机构信息

Department of Statistics, Brigham Young University, Provo, UT.

MPH, Health ResearchTx, LLC, Trevose, PA.

出版信息

J Am Stat Assoc. 2020;115(529):66-78. doi: 10.1080/01621459.2019.1609480. Epub 2019 May 31.

Abstract

Bronchiolitis (inflammation of the lower respiratory tract) in infants is primarily due to viral infection and is the single most common cause of infant hospitalization in the United States. To increase epidemiological understanding of bronchiolitis (and, subsequently, develop better prevention strategies), this research analyzes data on infant bronchiolitis cases from the U.S. Military Health System between the years 2003-2013 in Norfolk, Virginia, USA. For privacy reasons, child home addresses, birth dates, and diagnosis dates were randomized (jittered) creating spatio-temporal uncertainty in the geographic location and timing of bronchiolitis incidents. Using spatio-temporal point patterns, we created a modeling strategy that accounts for the jittering to estimate and quantify the uncertainty for the incidence proportion (IP) of bronchiolitis. Additionally, we regress the IP onto key covariates including pollution where we adequately account for uncertainty in the pollution levels (i.e., covariate uncertainty) using a land use regression model. Our analysis results indicate that the IP is positively associated with sulfur dioxide and population density. Further, we demonstrate how scientific conclusions may change if various sources of uncertainty (either spatio-temporal or covariate uncertainty) are not accounted for. Code submitted with this article was checked by an Associate Editor for Reproducibility and is available as an online supplement.

摘要

婴儿细支气管炎(下呼吸道炎症)主要由病毒感染引起,是美国婴儿住院的最常见单一原因。为了增进对细支气管炎的流行病学了解(进而制定更好的预防策略),本研究分析了2003年至2013年期间美国弗吉尼亚州诺福克市美国军事卫生系统的婴儿细支气管炎病例数据。出于隐私考虑,儿童家庭住址、出生日期和诊断日期被随机化(抖动处理),从而在细支气管炎事件的地理位置和时间上产生时空不确定性。利用时空点模式,我们创建了一种建模策略,该策略考虑了抖动处理,以估计和量化细支气管炎发病率比例(IP)的不确定性。此外,我们将IP回归到关键协变量上,包括污染,在此我们使用土地利用回归模型充分考虑了污染水平的不确定性(即协变量不确定性)。我们的分析结果表明,IP与二氧化硫和人口密度呈正相关。此外,我们还展示了如果不考虑各种不确定性来源(时空不确定性或协变量不确定性),科学结论可能会如何变化。本文提交的代码由一位负责可重复性的副主编进行了检查,可作为在线补充材料获取。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验