Huber Stefan, Klein Elise, Moeller Korbinian, Willmes Klaus
Leibniz-Institut für Wissensmedien, Tuebingen, Germany; Eberhardt-Karls University Tuebingen, Germany.
Leibniz-Institut für Wissensmedien, Tuebingen, Germany; Section Neuropsychology, Department of Neurology, University Hospital, RWTH Aachen University, Germany.
Cortex. 2015 Oct;71:148-59. doi: 10.1016/j.cortex.2015.06.020. Epub 2015 Jul 2.
In neuropsychological research, single-cases are often compared with a small control sample. Crawford and colleagues developed inferential methods (i.e., the modified t-test) for such a research design. In the present article, we suggest an extension of the methods of Crawford and colleagues employing linear mixed models (LMM). We first show that a t-test for the significance of a dummy coded predictor variable in a linear regression is equivalent to the modified t-test of Crawford and colleagues. As an extension to this idea, we then generalized the modified t-test to repeated measures data by using LMMs to compare the performance difference in two conditions observed in a single participant to that of a small control group. The performance of LMMs regarding Type I error rates and statistical power were tested based on Monte-Carlo simulations. We found that starting with about 15-20 participants in the control sample Type I error rates were close to the nominal Type I error rate using the Satterthwaite approximation for the degrees of freedom. Moreover, statistical power was acceptable. Therefore, we conclude that LMMs can be applied successfully to statistically evaluate performance differences between a single-case and a control sample.
在神经心理学研究中,单病例常常与一个小的对照样本进行比较。克劳福德及其同事针对这种研究设计开发了推理方法(即修正t检验)。在本文中,我们建议采用线性混合模型(LMM)对克劳福德及其同事的方法进行扩展。我们首先表明,线性回归中虚拟编码预测变量显著性的t检验等同于克劳福德及其同事的修正t检验。作为这一想法的扩展,我们随后通过使用线性混合模型将修正t检验推广到重复测量数据,以比较单个参与者在两种条件下观察到的表现差异与一个小对照组的差异。基于蒙特卡洛模拟测试了线性混合模型在I型错误率和统计功效方面的表现。我们发现,从对照样本中约15至20名参与者开始,使用自由度的萨特思韦特近似法时,I型错误率接近名义I型错误率。此外,统计功效是可接受的。因此,我们得出结论,线性混合模型可以成功应用于统计评估单病例与对照样本之间的表现差异。