Piacenza Elena, Presentato Alessandro, Ambrosi Emmanuele, Speghini Adolfo, Turner Raymond J, Vallini Giovanni, Lampis Silvia
Environmental Microbiology and Microbial Biotechnology Laboratory, Department of Biotechnology, University of Verona, Verona, Italy.
Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
Front Microbiol. 2018 Dec 19;9:3178. doi: 10.3389/fmicb.2018.03178. eCollection 2018.
SeITE02 and sp. MPV1 were isolated from the rhizosphere soil of the selenium-hyperaccumulator legume and waste material from a dumping site for roasted pyrites, respectively. Here, these bacterial strains were studied as cell factories to generate selenium-nanostructures (SeNS) under metabolically controlled growth conditions. Thus, a defined medium (DM) containing either glucose or pyruvate as carbon and energy source along with selenite () was tested to evaluate bacterial growth, oxyanion bioconversion and changes occurring in SeNS features with respect to those generated by these strains grown on rich media. Transmission electron microscopy (TEM) images show extra- or intra-cellular emergence of SeNS in SeITE02 or MPV1 respectively, revealing the presence of two distinct biological routes of SeNS biogenesis. Indeed, the stress exerted by upon SeITE02 cells triggered the production of membrane vesicles (MVs), which surrounded Se-nanoparticles (SeNPs and SeNPs with average diameter of 179 ± 56 and 208 ± 60 nm, respectively), as highlighted by TEM and scanning electron microscopy (SEM), strongly suggesting that MVs might play a crucial role in the excreting mechanism of the SeNPs in the extracellular environment. On the other hand, MPV1 strain biosynthesized intracellular inclusions likely containing hydrophobic storage compounds and SeNPs (123 ± 32 nm) under pyruvate conditioning, while the growth on glucose as the only source of carbon and energy led to the production of a mixed population of intracellular SeNPs (118 ± 36 nm) and nanorods (SeNRs; average length of 324 ± 89). SEM, fluorescence spectroscopy, and confocal laser scanning microscopy (CLSM) revealed that the biogenic SeNS were enclosed in an organic material containing proteins and amphiphilic molecules, possibly responsible for the high thermodynamic stability of these nanomaterials. Finally, the biogenic SeNS extracts were photoluminescent upon excitation ranging from 380 to 530 nm, whose degree of fluorescence emission (λ = 416-640 nm) was comparable to that from chemically synthesized SeNPs with L-cysteine (L-cys SeNPs). This study offers novel insights into the formation, localization, and release of biogenic SeNS generated by two different Gram-negative bacterial strains under aerobic and metabolically controlled growth conditions. The work strengthens the possibility of using these bacterial isolates as biocatalysts to produce high quality SeNS targeted to possible biomedical applications and other biotechnological purposes.
SeITE02菌株和MPV1菌株分别从硒超积累豆科植物的根际土壤和焙烧黄铁矿倾倒场的废料中分离得到。在此,对这些细菌菌株作为细胞工厂在代谢控制的生长条件下生成硒纳米结构(SeNS)进行了研究。因此,测试了一种含有葡萄糖或丙酮酸作为碳源和能源以及亚硒酸盐()的限定培养基(DM),以评估细菌生长、氧阴离子生物转化以及SeNS特征相对于在丰富培养基上生长的这些菌株所产生的特征的变化。透射电子显微镜(TEM)图像分别显示了SeITE02或MPV1中SeNS的细胞外或细胞内出现,揭示了SeNS生物合成的两种不同生物学途径的存在。事实上,施加在SeITE02细胞上的压力触发了膜泡(MVs)的产生,这些膜泡包围着硒纳米颗粒(SeNPs,平均直径分别为179±56和208±60 nm),TEM和扫描电子显微镜(SEM)突出显示了这一点,强烈表明MVs可能在细胞外环境中SeNPs的排泄机制中起关键作用。另一方面,MPV1菌株在丙酮酸条件下生物合成了可能含有疏水性储存化合物和SeNPs(123±32 nm)的细胞内包涵体,而以葡萄糖作为唯一碳源和能源生长则导致产生细胞内SeNPs(118±36 nm)和纳米棒(SeNRs;平均长度为324±89)的混合群体。SEM、荧光光谱和共聚焦激光扫描显微镜(CLSM)显示,生物合成的SeNS被包裹在一种含有蛋白质和两亲分子的有机材料中,这可能是这些纳米材料具有高热力学稳定性的原因。最后,生物合成的SeNS提取物在380至530 nm的激发下发出光致发光,其荧光发射程度(λ = 416 - 640 nm)与用L-半胱氨酸化学合成的SeNPs(L-cys SeNPs)相当。这项研究为两种不同革兰氏阴性细菌菌株在需氧和代谢控制的生长条件下产生的生物合成SeNS的形成、定位和释放提供了新的见解。这项工作增强了将这些细菌分离物用作生物催化剂以生产针对可能的生物医学应用和其他生物技术目的的高质量SeNS的可能性。