Suppr超能文献

植物硝酸还原酶在共生过程中调节一氧化氮的产生和固氮代谢。

Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the Symbiosis.

作者信息

Berger Antoine, Boscari Alexandre, Horta Araújo Natasha, Maucourt Mickaël, Hanchi Mohamed, Bernillon Stéphane, Rolin Dominique, Puppo Alain, Brouquisse Renaud

机构信息

Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d'Azur, CNRS, Sophia Antipolis, France.

Department of Horticultural Science, University of Florida, Gainesville, FL, United States.

出版信息

Front Plant Sci. 2020 Sep 4;11:1313. doi: 10.3389/fpls.2020.01313. eCollection 2020.

Abstract

Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N) is directly reduced to ammonia by the bacterial nitrogenase, which questions the role of NR in symbiosis. Next to that, NR is the best-characterized source of nitric oxide (NO) in plants, and NO is known to be produced during the symbiosis. In the present study, we first surveyed the three NR genes (Mt, Mt, and Mt) present in the genome and addressed their expression, activity, and potential involvement in NO production during the symbiosis between and . Our results show that Mt and Mt gene expression and activity are correlated with NO production throughout the symbiotic process and that MtNR1 is particularly involved in NO production in mature nodules. Moreover, NRs are involved together with the mitochondrial electron transfer chain in NO production throughout the symbiotic process and energy regeneration in N-fixing nodules. Using an NMR spectrometric approach, we show that, in mature nodules, NRs participate also in the regulation of energy state, cytosolic pH, carbon and nitrogen metabolism under both normoxia and hypoxia. These data point to the importance of NR activity for the N-fixing symbiosis and provide a first explanation of its role in this process.

摘要

硝酸还原酶(NR)是植物氮还原途径中的第一种酶,可导致氨的产生。然而,在豆科植物与根瘤菌的固氮共生关系中,大气中的氮(N)由细菌固氮酶直接还原为氨,这对NR在共生中的作用提出了质疑。除此之外,NR是植物中一氧化氮(NO)特征最明确的来源,并且已知在共生过程中会产生NO。在本研究中,我们首先调查了基因组中存在的三个NR基因(Mt、Mt和Mt),并研究了它们在与共生过程中的表达、活性以及在NO产生中的潜在作用。我们的结果表明,在整个共生过程中,Mt和Mt基因的表达及活性与NO的产生相关,并且MtNR1特别参与成熟根瘤中NO的产生。此外,在整个共生过程中,NR与线粒体电子传递链共同参与NO的产生以及固氮根瘤中的能量再生。使用核磁共振光谱法,我们表明,在成熟根瘤中,无论在常氧还是缺氧条件下,NR也参与能量状态、细胞质pH、碳和氮代谢的调节。这些数据表明NR活性对固氮共生的重要性,并首次解释了其在这一过程中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fafe/7500168/1b7bfcd3b91a/fpls-11-01313-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验