Suppr超能文献

深度学习模型在肺炎诊断中的比较和验证。

Comparison and Validation of Deep Learning Models for the Diagnosis of Pneumonia.

机构信息

International Education College, Zhengzhou University of Light Industry, Zhengzhou 450000, Henan, China.

School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.

出版信息

Comput Intell Neurosci. 2020 Sep 18;2020:8876798. doi: 10.1155/2020/8876798. eCollection 2020.

Abstract

As a respiratory infection, pneumonia has gained great attention from countries all over the world for its strong spreading and relatively high mortality. For pneumonia, early detection and treatment will reduce its mortality rate significantly. Currently, X-ray diagnosis is recognized as a relatively effective method. The visual analysis of a patient's X-ray chest radiograph by an experienced doctor takes about 5 to 15 minutes. When cases are concentrated, this will undoubtedly put tremendous pressure on the doctor's clinical diagnosis. Therefore, relying on the naked eye of the imaging doctor has very low efficiency. Hence, the use of artificial intelligence for clinical image diagnosis of pneumonia is a necessary thing. In addition, artificial intelligence recognition is very fast, and the convolutional neural networks (CNNs) have achieved better performance than human beings in terms of image identification. Therefore, we used the dataset which has chest X-ray images for classification made available by Kaggle with a total of 5216 train and 624 test images, with 2 classes as normal and pneumonia. We performed studies using five mainstream network algorithms to classify these diseases in the dataset and compared the results, from which we improved MobileNet's network structure and achieved a higher accuracy rate than other methods. Furthermore, the improved MobileNet's network could also extend to other areas for application.

摘要

作为一种呼吸道传染病,肺炎因其较强的传播性和相对较高的死亡率而受到世界各国的高度关注。对于肺炎,早期发现和治疗可以显著降低死亡率。目前,X 射线诊断被认为是一种相对有效的方法。经验丰富的医生对患者的 X 射线胸片进行视觉分析大约需要 5 到 15 分钟。在病例集中的情况下,这无疑会给医生的临床诊断带来巨大的压力。因此,仅仅依靠影像医生的肉眼观察效率非常低。因此,将人工智能应用于肺炎的临床影像诊断是必要的。此外,人工智能识别非常快,卷积神经网络(CNN)在图像识别方面的性能优于人类。因此,我们使用 Kaggle 提供的包含 5216 张训练图像和 624 张测试图像的胸部 X 射线图像分类数据集,将其分为正常和肺炎两类。我们使用五种主流网络算法对这些疾病进行了研究,并比较了结果,从而改进了 MobileNet 的网络结构,实现了比其他方法更高的准确率。此外,改进后的 MobileNet 网络还可以扩展到其他领域应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ac/7520009/4a895d41336f/CIN2020-8876798.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验