Suppr超能文献

通过对不同时间拍摄的胸部 X 光图像进行比较分析,提高计算机辅助胸部疾病诊断水平。

Improving Computer-Aided Thoracic Disease Diagnosis through Comparative Analysis Using Chest X-ray Images Taken at Different Times.

机构信息

Department of Electrical Engineering, National Chung Cheng University, Chiayi County 621301, Taiwan.

Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi County 621301, Taiwan.

出版信息

Sensors (Basel). 2024 Feb 24;24(5):1478. doi: 10.3390/s24051478.

Abstract

Medical professionals in thoracic medicine routinely analyze chest X-ray images, often comparing pairs of images taken at different times to detect lesions or anomalies in patients. This research aims to design a computer-aided diagnosis system that enhances the efficiency of thoracic physicians in comparing and diagnosing X-ray images, ultimately reducing misjudgments. The proposed system encompasses four key components: segmentation, alignment, comparison, and classification of lung X-ray images. Utilizing a public NIH Chest X-ray14 dataset and a local dataset gathered by the Chiayi Christian Hospital in Taiwan, the efficacy of both the traditional methods and deep-learning methods were compared. Experimental results indicate that, in both the segmentation and alignment stages, the deep-learning method outperforms the traditional method, achieving higher average IoU, detection rates, and significantly reduced processing time. In the comparison stage, we designed nonlinear transfer functions to highlight the differences between pre- and post-images through heat maps. In the classification stage, single-input and dual-input network architectures were proposed. The inclusion of difference information in single-input networks enhances AUC by approximately 1%, and dual-input networks achieve a 1.2-1.4% AUC increase, underscoring the importance of difference images in lung disease identification and classification based on chest X-ray images. While the proposed system is still in its early stages and far from clinical application, the results demonstrate potential steps forward in the development of a comprehensive computer-aided diagnostic system for comparative analysis of chest X-ray images.

摘要

医学专业人员在胸肺医学领域经常分析胸部 X 光图像,通常比较患者在不同时间拍摄的一对图像,以检测病变或异常。本研究旨在设计一个计算机辅助诊断系统,提高胸科医生比较和诊断 X 光图像的效率,最终减少误诊。该系统包括四个关键组件:肺部 X 光图像的分割、对齐、比较和分类。利用公共 NIH Chest X-ray14 数据集和台湾嘉义基督教医院收集的本地数据集,比较了传统方法和深度学习方法的效果。实验结果表明,在分割和对齐阶段,深度学习方法均优于传统方法,实现了更高的平均 IoU、检测率,并显著减少了处理时间。在比较阶段,我们设计了非线性传递函数,通过热图突出显示前后图像之间的差异。在分类阶段,提出了单输入和双输入网络架构。在单输入网络中加入差异信息,可使 AUC 提高约 1%,而双输入网络可使 AUC 提高 1.2-1.4%,这表明基于胸部 X 光图像的肺部疾病识别和分类中,差异图像的重要性。虽然该系统仍处于早期阶段,远未达到临床应用,但结果表明,在开发用于胸部 X 光图像比较分析的综合计算机辅助诊断系统方面,迈出了潜在的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e56b/10934565/302a00435862/sensors-24-01478-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验