Suppr超能文献

用于小鼠视网膜成像的自适应光学扫描激光检眼镜和光学相干断层扫描(AO-SLO-OCT)系统。

Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.

作者信息

Zhang Pengfei, Wahl Daniel J, Mocci Jacopo, Miller Eric B, Bonora Stefano, Sarunic Marinko V, Zawadzki Robert J

机构信息

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China.

UC Davis EyePod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA.

出版信息

Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.

Abstract

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are imaging technologies invented in the 1980s that have revolutionized the field of retinal diagnostics and are now commonly used in ophthalmology clinics as well as in vision science research. Adaptive optics (AO) technology enables high-fidelity correction of ocular aberrations, resulting in improved resolution and sensitivity for both SLO and OCT systems. The potential of gathering multi-modal cellular-resolution information in a single instrument is of great interest to the ophthalmic imaging community. Although similar instruments have been developed for imaging the human retina, developing such a system for mice will benefit basic science research and should help with further dissemination of AO technology. Here, we present our work integrating OCT into an existing mouse retinal AO-SLO system, resulting in a multi-modal AO-enhanced imaging system of the living mouse eye. The new system allows either independent or simultaneous data acquisition of AO-SLO and AO-OCT, depending on the requirements of specific scientific experiments. The system allows a data acquisition speed of 200 kHz A-scans/pixel rate for OCT and SLO, respectively. It offers ∼6 µm axial resolution for AO-OCT and a ∼1 µm lateral resolution for AO-SLO-OCT imaging.

摘要

光学相干断层扫描(OCT)和扫描激光检眼镜(SLO)是20世纪80年代发明的成像技术,它们彻底改变了视网膜诊断领域,如今在眼科诊所和视觉科学研究中都得到了广泛应用。自适应光学(AO)技术能够对眼部像差进行高保真校正,从而提高SLO和OCT系统的分辨率和灵敏度。在单一仪器中收集多模态细胞分辨率信息的潜力引起了眼科成像领域的极大兴趣。尽管已经开发出了用于人类视网膜成像的类似仪器,但为小鼠开发这样的系统将有益于基础科学研究,并有助于AO技术的进一步推广。在此,我们展示了将OCT集成到现有的小鼠视网膜AO-SLO系统中的工作,从而形成了一种用于活体小鼠眼睛的多模态AO增强成像系统。根据特定科学实验的要求,新系统允许独立或同时采集AO-SLO和AO-OCT数据。该系统分别为OCT和SLO提供200 kHz A扫描/像素率的数据采集速度。它为AO-OCT提供约6微米的轴向分辨率,为AO-SLO-OCT成像提供约1微米的横向分辨率。

相似文献

1
Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.
Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.
2
Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.
Biomed Opt Express. 2015 May 21;6(6):2191-210. doi: 10.1364/BOE.6.002191. eCollection 2015 Jun 1.
5
Imaging of retinal vasculature using adaptive optics SLO/OCT.
Biomed Opt Express. 2015 Mar 23;6(4):1407-18. doi: 10.1364/BOE.6.001407. eCollection 2015 Apr 1.
8
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.
9
High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy.
Ophthalmology. 2011 May;118(5):873-81. doi: 10.1016/j.ophtha.2010.08.032. Epub 2010 Nov 12.
10
Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system.
Biomed Opt Express. 2013 Oct 1;4(11):2307-21. doi: 10.1364/BOE.4.002307. eCollection 2013.

引用本文的文献

1
Integrated visible-light optical coherence tomography and fluorescence scanning laser ophthalmoscopy to image retinal ganglion cell axons.
Biomed Opt Express. 2025 Jun 17;16(7):2847-2856. doi: 10.1364/BOE.561992. eCollection 2025 Jul 1.
2
volumetric analysis of retinal vascular hemodynamics in mice with spatio-temporal optical coherence tomography.
Neurophotonics. 2024 Oct;11(4):0450031-4500322. doi: 10.1117/1.NPh.11.4.045003. Epub 2024 Oct 8.
4
Principles of microscopy for ophthalmologists.
Eye (Lond). 2025 Mar;39(4):635-643. doi: 10.1038/s41433-024-02970-0. Epub 2024 Feb 19.
6
Introduction to Visual and Physiological Optics feature issue of .
Biomed Opt Express. 2023 Jun 30;14(7):3853-3855. doi: 10.1364/BOE.499269. eCollection 2023 Jul 1.
7
Introduction to the Feature Issue on Adaptive Optics for Biomedical Applications.
Biomed Opt Express. 2023 Mar 30;14(4):1772-1776. doi: 10.1364/BOE.488044. eCollection 2023 Apr 1.

本文引用的文献

1
Ultrahigh-speed multimodal adaptive optics system for microscopic structural and functional imaging of the human retina.
Biomed Opt Express. 2022 Oct 17;13(11):5860-5878. doi: 10.1364/BOE.462594. eCollection 2022 Nov 1.
2
Visualizing retinal cells with adaptive optics imaging modalities using a translational imaging framework.
Biomed Opt Express. 2022 Apr 25;13(5):3042-3055. doi: 10.1364/BOE.454560. eCollection 2022 May 1.
3
Integrating adaptive optics-SLO and OCT for multimodal visualization of the human retinal pigment epithelial mosaic.
Biomed Opt Express. 2021 Feb 17;12(3):1449-1466. doi: 10.1364/BOE.413438. eCollection 2021 Mar 1.
4
Super-resolution ophthalmoscopy: Virtually structured detection for resolution improvement in retinal imaging.
Exp Biol Med (Maywood). 2021 Feb;246(3):249-259. doi: 10.1177/1535370220970533. Epub 2020 Nov 27.
5
Registration of fluorescein angiography and optical coherence tomography images of curved retina via scanning laser ophthalmoscopy photographs.
Biomed Opt Express. 2020 Jun 2;11(7):3455-3476. doi: 10.1364/BOE.395784. eCollection 2020 Jul 1.
6
Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo.
Light Sci Appl. 2020 May 6;9:79. doi: 10.1038/s41377-020-0317-9. eCollection 2020.
7
Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence.
Biomed Opt Express. 2019 Aug 27;10(9):4859-4873. doi: 10.1364/BOE.10.004859. eCollection 2019 Sep 1.
8
Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction.
Biomed Opt Express. 2019 Aug 23;10(9):4757-4774. doi: 10.1364/BOE.10.004757. eCollection 2019 Sep 1.
9
10
In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16603-16612. doi: 10.1073/pnas.1903336116. Epub 2019 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验