Suppr超能文献

无传感器自适应光学光学相干断层扫描血管造影术

Sensorless adaptive-optics optical coherence tomographic angiography.

作者信息

Camino Acner, Zang Pengxiao, Athwal Arman, Ni Shuibin, Jia Yali, Huang David, Jian Yifan

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR 27239, USA.

Department of Engineering Science, Simon Fraser University, Burnaby, Canada.

出版信息

Biomed Opt Express. 2020 Jun 24;11(7):3952-3967. doi: 10.1364/BOE.396829. eCollection 2020 Jul 1.

Abstract

Optical coherence tomographic angiography (OCTA) can image the retinal blood flow but visualization of the capillary caliber is limited by the low lateral resolution. Adaptive optics (AO) can be used to compensate ocular aberrations when using high numerical aperture (NA), and thus improve image resolution. However, previously reported AO-OCTA instruments were large and complex, and have a small sub-millimeter field of view (FOV) that hinders the extraction of biomarkers with clinical relevance. In this manuscript, we developed a sensorless AO-OCTA prototype with an intermediate numerical aperture to produce depth-resolved angiograms with high resolution and signal-to-noise ratio over a 2 × 2 mm FOV, with a focal spot diameter of 6 µm, which is about 3 times finer than typical commercial OCT systems. We believe these parameters may represent a better tradeoff between resolution and FOV compared to large-NA AO systems, since the spot size matches better that of capillaries. The prototype corrects defocus, astigmatism, and coma using a figure of merit based on the mean reflectance projection of a slab defined with real-time segmentation of retinal layers. AO correction with the ability to optimize focusing in arbitrary retinal depths - particularly the plexuses in the inner retina - could be achieved in 1.35 seconds. The AO-OCTA images showed greater flow signal, signal-to-noise ratio, and finer capillary caliber compared to commercial OCTA. Projection artifacts were also reduced in the intermediate and deep capillary plexuses. The instrument reported here improves OCTA image quality without excessive sacrifice in FOV and device complexity, and thus may have potential for clinical translation.

摘要

光学相干断层扫描血管造影(OCTA)能够对视网膜血流进行成像,但由于横向分辨率较低,毛细血管管径的可视化受到限制。自适应光学(AO)可在使用高数值孔径(NA)时用于补偿眼部像差,从而提高图像分辨率。然而,先前报道的AO - OCTA仪器体积庞大且复杂,并且视野(FOV)小于1平方毫米,这阻碍了具有临床相关性的生物标志物的提取。在本论文中,我们开发了一种具有中等数值孔径的无传感器AO - OCTA原型,以在2×2毫米的视野内产生具有高分辨率和信噪比的深度分辨血管造影图,焦斑直径为6微米,比典型的商用OCT系统精细约3倍。我们认为,与大数值孔径AO系统相比,这些参数可能在分辨率和视野之间实现了更好的权衡,因为光斑尺寸与毛细血管的光斑尺寸更匹配。该原型基于视网膜层实时分割定义的平板的平均反射投影,使用品质因数来校正散焦、散光和彗差。能够在任意视网膜深度(特别是视网膜内层的神经丛)优化聚焦的AO校正可在1.35秒内完成。与商用OCTA相比,AO - OCTA图像显示出更强的血流信号、信噪比和更细的毛细血管管径。在中间和深层毛细血管丛中,投影伪像也减少了。本文报道的仪器在不过度牺牲视野和设备复杂性的情况下提高了OCTA图像质量,因此可能具有临床转化潜力。

相似文献

1
Sensorless adaptive-optics optical coherence tomographic angiography.
Biomed Opt Express. 2020 Jun 24;11(7):3952-3967. doi: 10.1364/BOE.396829. eCollection 2020 Jul 1.
2
Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics.
Biomed Opt Express. 2016 Dec 12;8(1):207-222. doi: 10.1364/BOE.8.000207. eCollection 2017 Jan 1.
5
Reflectance-based projection-resolved optical coherence tomography angiography [Invited].
Biomed Opt Express. 2017 Feb 15;8(3):1536-1548. doi: 10.1364/BOE.8.001536. eCollection 2017 Mar 1.
6
Multi-scale and -contrast sensorless adaptive optics optical coherence tomography.
Quant Imaging Med Surg. 2019 May;9(5):757-768. doi: 10.21037/qims.2019.05.17.
7
Imaging of Retinal Vascular Layers: Adaptive Optics Scanning Laser Ophthalmoscopy Versus Optical Coherence Tomography Angiography.
Transl Vis Sci Technol. 2017 Sep 1;6(5):2. doi: 10.1167/tvst.6.5.2. eCollection 2017 Sep.
8
Projection-Resolved Optical Coherence Tomographic Angiography of Retinal Plexuses in Retinitis Pigmentosa.
Am J Ophthalmol. 2019 Aug;204:70-79. doi: 10.1016/j.ajo.2019.02.034. Epub 2019 Mar 6.
10
Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging.
J Biomed Opt. 2017 Nov;22(12):1-10. doi: 10.1117/1.JBO.22.12.121703.

引用本文的文献

1
Dual acquisition scheme-based optical coherence tomography 3D angiography.
J Biomed Opt. 2025 May;30(5):056004. doi: 10.1117/1.JBO.30.5.056004. Epub 2025 May 8.
2
Advances in OCT Angiography.
Transl Vis Sci Technol. 2025 Mar 3;14(3):6. doi: 10.1167/tvst.14.3.6.
3
Image metric-based multi-observation single-step deep deterministic policy gradient for sensorless adaptive optics.
Biomed Opt Express. 2024 Jul 23;15(8):4795-4814. doi: 10.1364/BOE.528579. eCollection 2024 Aug 1.
5
A review of low-cost and portable optical coherence tomography.
Prog Biomed Eng (Bristol). 2021 Jul;3(3). doi: 10.1088/2516-1091/abfeb7. Epub 2021 May 24.
6
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
7
Computational adaptive holographic fluorescence microscopy based on the stochastic parallel gradient descent algorithm.
Biomed Opt Express. 2022 Nov 15;13(12):6431-6442. doi: 10.1364/BOE.470959. eCollection 2022 Dec 1.
8
Volumetric directional optical coherence tomography.
Biomed Opt Express. 2022 Jan 21;13(2):950-961. doi: 10.1364/BOE.447882. eCollection 2022 Feb 1.
9
Advances in multimodal imaging in ophthalmology.
Ther Adv Ophthalmol. 2021 Mar 19;13:25158414211002400. doi: 10.1177/25158414211002400. eCollection 2021 Jan-Dec.
10
Layer-based, depth-resolved computation of attenuation coefficients and backscattering fractions in tissue using optical coherence tomography.
Biomed Opt Express. 2021 Jul 20;12(8):5037-5056. doi: 10.1364/BOE.427833. eCollection 2021 Aug 1.

本文引用的文献

1
Pseudo-real-time retinal layer segmentation for high-resolution adaptive optics optical coherence tomography.
J Biophotonics. 2020 Aug;13(8):e202000042. doi: 10.1002/jbio.202000042. Epub 2020 Jun 17.
3
High dynamic range optical coherence tomography angiography (HDR-OCTA).
Biomed Opt Express. 2019 Jun 24;10(7):3560-3571. doi: 10.1364/BOE.10.003560. eCollection 2019 Jul 1.
5
Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition.
Opt Lett. 2019 Mar 15;44(6):1431-1434. doi: 10.1364/OL.44.001431.
7
Sensorless adaptive optics multimodal en-face small animal retinal imaging.
Biomed Opt Express. 2018 Dec 19;10(1):252-267. doi: 10.1364/BOE.10.000252. eCollection 2019 Jan 1.
8
Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA.
Transl Vis Sci Technol. 2018 Dec 6;7(6):20. doi: 10.1167/tvst.7.6.20. eCollection 2018 Nov.
9
MEDnet, a neural network for automated detection of avascular area in OCT angiography.
Biomed Opt Express. 2018 Oct 2;9(11):5147-5158. doi: 10.1364/BOE.9.005147. eCollection 2018 Nov 1.
10
Prevalence of Subclinical CNV and Choriocapillaris Nonperfusion in Fellow Eyes of Unilateral Exudative AMD on OCT Angiography.
Transl Vis Sci Technol. 2018 Oct 1;7(5):19. doi: 10.1167/tvst.7.5.19. eCollection 2018 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验