Simon Fraser University, Department of Engineering Science, Burnaby, British Columbia, Canada.
J Biomed Opt. 2017 Nov;22(12):1-10. doi: 10.1117/1.JBO.22.12.121703.
We present a multiscale sensorless adaptive optics (SAO) OCT system capable of imaging retinal structure and vasculature with various fields-of-view (FOV) and resolutions. Using a single deformable mirror and exploiting the polarization properties of light, the SAO-OCT-A was implemented in a compact and easy to operate system. With the ability to adjust the beam diameter at the pupil, retinal imaging was demonstrated at two different numerical apertures with the same system. The general morphological structure and retinal vasculature could be observed with a few tens of micrometer-scale lateral resolution with conventional OCT and OCT-A scanning protocols with a 1.7-mm-diameter beam incident at the pupil and a large FOV (15 deg× 15 deg). Changing the system to a higher numerical aperture with a 5.0-mm-diameter beam incident at the pupil and the SAO aberration correction, the FOV was reduced to 3 deg× 3 deg for fine detailed imaging of morphological structure and microvasculature such as the photoreceptor mosaic and capillaries. Multiscale functional SAO-OCT imaging was performed on four healthy subjects, demonstrating its functionality and potential for clinical utility.
我们提出了一种多尺度无传感器自适应光学(SAO)OCT 系统,能够以各种视场(FOV)和分辨率成像视网膜结构和血管。该系统使用单个变形镜并利用光的偏振特性,在一个紧凑且易于操作的系统中实现了 SAO-OCT-A。通过能够调整瞳孔处的光束直径,我们展示了在相同系统中使用两种不同数值孔径进行视网膜成像的能力。使用传统的 OCT 和 OCT-A 扫描协议,以 1.7mm 直径的光束入射瞳孔和大 FOV(15°×15°),可以观察到一般形态结构和视网膜血管。通过将系统切换到具有 5.0mm 直径光束入射瞳孔和 SAO 像差校正的更高数值孔径,可以将 FOV 缩小到 3°×3°,用于对形态结构和微血管(如光感受器镶嵌和毛细血管)等精细细节成像。对四名健康受试者进行了多尺度功能 SAO-OCT 成像,证明了其功能和临床应用的潜力。