Suppr超能文献

MEDnet,一种用于在光学相干断层扫描血管造影中自动检测无血管区域的神经网络。

MEDnet, a neural network for automated detection of avascular area in OCT angiography.

作者信息

Guo Yukun, Camino Acner, Wang Jie, Huang David, Hwang Thomas S, Jia Yali

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.

Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

Biomed Opt Express. 2018 Oct 2;9(11):5147-5158. doi: 10.1364/BOE.9.005147. eCollection 2018 Nov 1.

Abstract

Screening and assessing diabetic retinopathy (DR) are essential for reducing morbidity associated with diabetes. Macular ischemia is known to correlate with the severity of retinopathy. Recent studies have shown that optical coherence tomography angiography (OCTA), with intrinsic contrast from blood flow motion, is well suited for quantified analysis of the avascular area, which is potentially a useful biomarker in DR. In this study, we propose the first deep learning solution to segment the avascular area in OCTA of DR. The network design consists of a multi-scaled encoder-decoder neural network (MEDnet) to detect the non-perfusion area in 6 × 6 mm and in ultra-wide field retinal angiograms. Avascular areas were effectively detected in DR subjects of various disease stages as well as in the foveal avascular zone of healthy subjects.

摘要

筛查和评估糖尿病视网膜病变(DR)对于降低糖尿病相关的发病率至关重要。已知黄斑缺血与视网膜病变的严重程度相关。最近的研究表明,光学相干断层扫描血管造影(OCTA)具有来自血流运动的固有对比度,非常适合对无血管区进行定量分析,而无血管区可能是DR中一种有用的生物标志物。在本研究中,我们提出了首个用于分割DR的OCTA中无血管区的深度学习解决方案。网络设计包括一个多尺度编码器-解码器神经网络(MEDnet),用于检测6×6毫米和超广角视网膜血管造影中的无灌注区。在不同疾病阶段的DR受试者以及健康受试者的黄斑无血管区中均能有效检测到无血管区。

相似文献

1
MEDnet, a neural network for automated detection of avascular area in OCT angiography.
Biomed Opt Express. 2018 Oct 2;9(11):5147-5158. doi: 10.1364/BOE.9.005147. eCollection 2018 Nov 1.
8
An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy.
J Ophthalmic Vis Res. 2018 Oct-Dec;13(4):487-497. doi: 10.4103/jovr.jovr_57_18.
10
Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 1: Diabetic Retinopathy.
Transl Vis Sci Technol. 2020 Sep 30;9(10):34. doi: 10.1167/tvst.9.10.34. eCollection 2020 Sep.

引用本文的文献

1
FLA-UNet: feature-location attention U-Net for foveal avascular zone segmentation in OCTA images.
Front Artif Intell. 2025 Jul 17;8:1463233. doi: 10.3389/frai.2025.1463233. eCollection 2025.
4
Nonperfused Retinal Capillaries-A New Method Developed on OCT and OCTA.
Invest Ophthalmol Vis Sci. 2025 Apr 1;66(4):22. doi: 10.1167/iovs.66.4.22.
6
OCTA-based AMD Stage Grading Enhancement via Class-Conditioned Style Transfer.
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-5. doi: 10.1109/EMBC53108.2024.10782262.
7
Quantitative Volumetric Analysis of Retinal Ischemia with an Oxygen Diffusion Model and OCT Angiography.
Ophthalmol Sci. 2024 Jul 19;4(6):100579. doi: 10.1016/j.xops.2024.100579. eCollection 2024 Nov-Dec.
8
Robust AMD Stage Grading with Exclusively OCTA Modality Leveraging 3D Volume.
IEEE Int Conf Comput Vis Workshops. 2023 Oct;2023:2403-2412. doi: 10.1109/ICCVW60793.2023.00255. Epub 2023 Dec 25.
9
VMseg: Using spatial variance to automatically segment retinal non-perfusion on OCT-angiography.
PLoS One. 2024 Aug 7;19(8):e0306794. doi: 10.1371/journal.pone.0306794. eCollection 2024.

本文引用的文献

1
Deep learning for the segmentation of preserved photoreceptors on optical coherence tomography in two inherited retinal diseases.
Biomed Opt Express. 2018 Jun 12;9(7):3092-3105. doi: 10.1364/BOE.9.003092. eCollection 2018 Jul 1.
3
Automated detection of preserved photoreceptor on optical coherence tomography in choroideremia based on machine learning.
J Biophotonics. 2018 May;11(5):e201700313. doi: 10.1002/jbio.201700313. Epub 2018 Feb 9.
4
A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):203-211. doi: 10.1167/iovs.17-22953.
5
Automated detection of photoreceptor disruption in mild diabetic retinopathy on volumetric optical coherence tomography.
Biomed Opt Express. 2017 Nov 7;8(12):5384-5398. doi: 10.1364/BOE.8.005384. eCollection 2017 Dec 1.
6
ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.
Biomed Opt Express. 2017 Jul 13;8(8):3627-3642. doi: 10.1364/BOE.8.003627. eCollection 2017 Aug 1.
7
Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography.
Biomed Opt Express. 2017 May 23;8(6):3053-3066. doi: 10.1364/BOE.8.003053. eCollection 2017 Jun 1.
8
Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.
Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.
9
Extended axial imaging range, widefield swept source optical coherence tomography angiography.
J Biophotonics. 2017 Nov;10(11):1464-1472. doi: 10.1002/jbio.201600325. Epub 2017 May 11.
10
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
IEEE Trans Pattern Anal Mach Intell. 2018 Apr;40(4):834-848. doi: 10.1109/TPAMI.2017.2699184. Epub 2017 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验