Tahernia Mehdi, Mohammadifar Maedeh, Liu Lin, Choi Seokheun
Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton 13902-6000, New York, United States.
ACS Omega. 2020 Aug 20;5(38):24717-24723. doi: 10.1021/acsomega.0c03299. eCollection 2020 Sep 29.
Bacterial electrochemical activities can promote sustainable energy and environmental engineering applications. Characterizing their ability is critical for effectively adopting these technologies. Conventional studies of the electroactive bacteria are limited to insensitive, time-consuming, and labor-intensive two-electrode microbial fuel cell (MFC) techniques. Even the latest miniaturized MFC array is limited by irreproducibility and uncontrollability. In this work, we created a 4-well electrochemical sensing array with an integrated, custom-made three-electrode potentiostat to provide a controllable analytic capability without unwanted perturbations. A simple potentiostat circuit used two operational amplifiers and one resistor, allowing chronoamperometric and staircase voltammetric analyses of three well-known electroactive bacteria species: MR1, PAO1, and . Portability and disposability were emphasized by integrating all the functions into a paper substrate, which makes analyses possible at the point-of-use and in resource-limited settings without a bulky and expensive benchtop potentiostat. After use, the papertronic system was disposed of safely by incineration without posing any bacterial cytotoxic risks. This novel sensing platform creates an inexpensive, scalable, time-saving, high-performance, and user-friendly platform that facilitates the study of fundamental electrocatalytic activities of bacteria.
细菌的电化学活性可促进可持续能源和环境工程应用。表征它们的能力对于有效采用这些技术至关重要。传统上对电活性细菌的研究局限于不灵敏、耗时且费力的双电极微生物燃料电池(MFC)技术。即便最新的小型化MFC阵列也受到不可重复性和不可控性的限制。在这项工作中,我们创建了一个带有集成定制三电极恒电位仪的4孔电化学传感阵列,以提供可控的分析能力且无不必要的干扰。一个简单的恒电位仪电路使用了两个运算放大器和一个电阻,可对三种著名的电活性细菌:MR1、PAO1和(此处原文缺失一种细菌名称)进行计时电流分析和阶梯伏安分析。通过将所有功能集成到纸质基底中强调了便携性和一次性使用,这使得在使用点以及资源有限的环境中无需笨重且昂贵的台式恒电位仪就能进行分析。使用后,纸质电子系统通过焚烧安全处置,不会带来任何细菌细胞毒性风险。这个新颖的传感平台创建了一个廉价、可扩展、省时、高性能且用户友好的平台,便于研究细菌的基本电催化活性。