Zheng Tianye, Kramer Dominik, Tahmasebi Mohammad H, Mönig Reiner, Boles Steven T
Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
ChemSusChem. 2020 Nov 20;13(22):5910-5920. doi: 10.1002/cssc.202002023. Epub 2020 Oct 16.
Aluminum is well-known to possess attractive properties for possible use as an anode material in Li-ion batteries (LIBs), but effort is still needed to understand how and why it degrades. Herein, investigations of the delithiation and the re-lithiation processes in Al thin films using an established operando light microscopic platform are pursued. Operando videos highlight that the extraction of Li from the β phase (LiAl) is accompanied by fracture and crack formation leading to the detachment of the α phase (Al) from the rest of the electrode. The evolution of mechanical stress in Al thin film electrodes is tracked and shows severe stress asymmetry as phase transformations progress. Combining with the observations from light and electron microscopy, the mechanical stress during dealloying can be explained by Li solubility with the β phase, formation of cracks and of a highly porous Al nanostructure. Although the results pave a difficult path for utilization of the Al/LiAl/Al (α/β/α) phase transformations in future LIBs, they also suggest excellent opportunities when structural changes can be prevented, which otherwise impact the stability of Al-based electrodes.
众所周知,铝具有一些吸引人的特性,有可能用作锂离子电池(LIBs)的负极材料,但仍需努力了解其降解方式及原因。在此,我们利用一个成熟的原位光学显微镜平台对铝薄膜中的脱锂和再锂化过程进行了研究。原位视频突出显示,从β相(LiAl)中提取锂的过程伴随着断裂和裂纹形成,导致α相(Al)与电极的其余部分分离。我们跟踪了铝薄膜电极中机械应力的演变,结果表明随着相变的进行,应力存在严重的不对称性。结合光学显微镜和电子显微镜的观察结果,脱合金过程中的机械应力可以通过锂在β相中的溶解度、裂纹的形成以及高度多孔的铝纳米结构来解释。尽管这些结果为未来锂离子电池中利用Al/LiAl/Al(α/β/α)相变铺设了一条艰难的道路,但它们也表明,当能够防止结构变化时,就会有极好的机会,否则结构变化会影响铝基电极的稳定性。