Mukhopadhyay Priyanka
Department of Computer Science, University of Toronto, Toronto, ON, Canada.
Sci Rep. 2024 Jun 17;14(1):13916. doi: 10.1038/s41598-024-64558-8.
In quantum computing there are quite a few universal gate sets, each having their own characteristics. In this paper we study the Clifford+CS universal fault-tolerant gate set. The CS gate is used is many applications and this gate set is an important alternative to Clifford+T. We introduce a generating set in order to represent any unitary implementable by this gate set and with this we derive a bound on the CS-count of arbitrary multi-qubit unitaries. Analysing the channel representation of the generating set elements, we infer , where and are the set of unitaries exactly implementable by the Clifford+CS and Clifford+T gate sets, respectively. We develop CS-count optimal synthesis algorithms for both approximately and exactly implementable multi-qubit unitaries. With the help of these we derive a CS-count-optimal circuit for Toffoli, implying , where is the set of unitaries exactly implementable by the Clifford+Toffoli gate set. Such conclusions can have an important impact on resource estimates of quantum algorithms.
在量子计算中有相当多的通用门集,每个都有其自身的特点。在本文中,我们研究了Clifford + CS通用容错门集。CS门在许多应用中都有使用,并且这个门集是Clifford + T的一个重要替代方案。我们引入一个生成集,以便表示由这个门集可实现的任何酉算子,借此我们推导出任意多量子比特酉算子的CS计数的一个界限。通过分析生成集元素的信道表示,我们推断出 ,其中 和 分别是由Clifford + CS和Clifford + T门集恰好可实现的酉算子集合。我们为近似和恰好可实现的多量子比特酉算子开发了CS计数最优合成算法。借助这些算法,我们推导出了Toffoli门的CS计数最优电路,这意味着 ,其中 是由Clifford + Toffoli门集恰好可实现的酉算子集合。这些结论可能会对量子算法的资源估计产生重要影响。