Suppr超能文献

基于机器学习的动脉瘤性蛛网膜下腔出血良好功能预后的并发症及治疗意识预测模型的开发

Development of a Complication- and Treatment-Aware Prediction Model for Favorable Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning.

作者信息

Maldaner Nicolai, Zeitlberger Anna M, Sosnova Marketa, Goldberg Johannes, Fung Christian, Bervini David, May Adrien, Bijlenga Philippe, Schaller Karl, Roethlisberger Michel, Rychen Jonathan, Zumofen Daniel W, D'Alonzo Donato, Marbacher Serge, Fandino Javier, Daniel Roy Thomas, Burkhardt Jan-Karl, Chiappini Alessio, Robert Thomas, Schatlo Bawarjan, Schmid Josef, Maduri Rodolfo, Staartjes Victor E, Seule Martin A, Weyerbrock Astrid, Serra Carlo, Stienen Martin Nikolaus, Bozinov Oliver, Regli Luca

机构信息

Department of Neurosurgery, University Hospital Zurich & Clinical Neuroscience Center, University of Zurich, Zurich, Switzerland.

Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland.

出版信息

Neurosurgery. 2021 Jan 13;88(2):E150-E157. doi: 10.1093/neuros/nyaa401.

Abstract

BACKGROUND

Current prognostic tools in aneurysmal subarachnoid hemorrhage (aSAH) are constrained by being primarily based on patient and disease characteristics on admission.

OBJECTIVE

To develop and validate a complication- and treatment-aware outcome prediction tool in aSAH.

METHODS

This cohort study included data from an ongoing prospective nationwide multicenter registry on all aSAH patients in Switzerland (Swiss SOS [Swiss Study on aSAH]; 2009-2015). We trained supervised machine learning algorithms to predict a binary outcome at discharge (modified Rankin scale [mRS] ≤ 3: favorable; mRS 4-6: unfavorable). Clinical and radiological variables on admission ("Early" Model) as well as additional variables regarding secondary complications and disease management ("Late" Model) were used. Performance of both models was assessed by classification performance metrics on an out-of-sample test dataset.

RESULTS

Favorable functional outcome at discharge was observed in 1156 (62.0%) of 1866 patients. Both models scored a high accuracy of 75% to 76% on the test set. The "Late" outcome model outperformed the "Early" model with an area under the receiver operator characteristics curve (AUC) of 0.85 vs 0.79, corresponding to a specificity of 0.81 vs 0.70 and a sensitivity of 0.71 vs 0.79, respectively.

CONCLUSION

Both machine learning models show good discrimination and calibration confirmed on application to an internal test dataset of patients with a wide range of disease severity treated in different institutions within a nationwide registry. Our study indicates that the inclusion of variables reflecting the clinical course of the patient may lead to outcome predictions with superior predictive power compared to a model based on admission data only.

摘要

背景

目前动脉瘤性蛛网膜下腔出血(aSAH)的预后评估工具主要基于患者入院时的特征和疾病特点,存在一定局限性。

目的

开发并验证一种能够考虑并发症和治疗情况的aSAH预后预测工具。

方法

这项队列研究纳入了瑞士一项正在进行的全国性前瞻性多中心登记研究(瑞士蛛网膜下腔出血研究[Swiss SOS];2009 - 2015年)中所有aSAH患者的数据。我们训练了监督式机器学习算法来预测出院时的二元结局(改良Rankin量表[mRS]≤3:良好;mRS 4 - 6:不良)。使用了入院时的临床和放射学变量(“早期”模型)以及关于继发性并发症和疾病管理的额外变量(“晚期”模型)。通过对样本外测试数据集的分类性能指标评估两种模型的性能。

结果

1866例患者中有1156例(62.0%)出院时功能结局良好。两种模型在测试集上的准确率均达到75%至76%。“晚期”结局模型优于“早期”模型,其受试者操作特征曲线下面积(AUC)分别为0.85和0.79,特异性分别为0.81和0.70,敏感性分别为0.71和0.79。

结论

在全国性登记研究中,将这两种机器学习模型应用于不同机构治疗的疾病严重程度各异的患者内部测试数据集时,均显示出良好的区分度和校准度。我们的研究表明,与仅基于入院数据的模型相比,纳入反映患者临床病程的变量可能会带来预测能力更强的结局预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验