CLAIM - Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
Department of Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
Neurosurg Rev. 2023 Aug 19;46(1):206. doi: 10.1007/s10143-023-02114-0.
Early and reliable prediction of shunt-dependent hydrocephalus (SDHC) after aneurysmal subarachnoid hemorrhage (aSAH) may decrease the duration of in-hospital stay and reduce the risk of catheter-associated meningitis. Machine learning (ML) may improve predictions of SDHC in comparison to traditional non-ML methods. ML models were trained for CHESS and SDASH and two combined individual feature sets with clinical, radiographic, and laboratory variables. Seven different algorithms were used including three types of generalized linear models (GLM) as well as a tree boosting (CatBoost) algorithm, a Naive Bayes (NB) classifier, and a multilayer perceptron (MLP) artificial neural net. The discrimination of the area under the curve (AUC) was classified (0.7 ≤ AUC < 0.8, acceptable; 0.8 ≤ AUC < 0.9, excellent; AUC ≥ 0.9, outstanding). Of the 292 patients included with aSAH, 28.8% (n = 84) developed SDHC. Non-ML-based prediction of SDHC produced an acceptable performance with AUC values of 0.77 (CHESS) and 0.78 (SDASH). Using combined feature sets with more complex variables included than those incorporated in the scores, the ML models NB and MLP reached excellent performances, with an AUC of 0.80, respectively. After adding the amount of CSF drained within the first 14 days as a late feature to ML-based prediction, excellent performances were reached in the MLP (AUC 0.81), NB (AUC 0.80), and tree boosting model (AUC 0.81). ML models may enable clinicians to reliably predict the risk of SDHC after aSAH based exclusively on admission data. Future ML models may help optimize the management of SDHC in aSAH by avoiding delays in clinical decision-making.
早期且可靠地预测颅内动脉瘤性蛛网膜下腔出血(aSAH)后分流依赖性脑积水(SDHC),可能会减少住院时间,降低导管相关性脑膜炎的风险。与传统的非机器学习(ML)方法相比,机器学习(ML)模型可能会提高 SDHC 的预测能力。使用包括三种广义线性模型(GLM)在内的七种不同算法,对 CHESS 和 SDASH 以及两个包含临床、影像学和实验室变量的个体特征集进行了训练。该研究纳入了 292 例伴有 aSAH 的患者,其中 28.8%(n=84)发生了 SDHC。基于非 ML 的 SDHC 预测表现尚可,AUC 值为 0.77(CHESS)和 0.78(SDASH)。使用包含比评分中更多复杂变量的组合特征集,NB 和 MLP 等 ML 模型的表现达到了优秀水平,AUC 值分别为 0.80。在将最初 14 天内引流的 CSF 量作为晚期特征添加到基于 ML 的预测中后,MLP(AUC 0.81)、NB(AUC 0.80)和树增强模型(AUC 0.81)的表现达到了优秀。ML 模型可能使临床医生能够仅根据入院数据可靠地预测 aSAH 后发生 SDHC 的风险。未来的 ML 模型可能通过避免临床决策延迟来帮助优化 aSAH 中 SDHC 的管理。