Suppr超能文献

基于机器学习的显微手术治疗未破裂颅内动脉瘤的结果预测。

Machine learning based outcome prediction of microsurgically treated unruptured intracranial aneurysms.

机构信息

Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Linz, Austria.

RISC Software GmbH, Hagenberg, Austria.

出版信息

Sci Rep. 2023 Dec 19;13(1):22641. doi: 10.1038/s41598-023-50012-8.

Abstract

Machine learning (ML) has revolutionized data processing in recent years. This study presents the results of the first prediction models based on a long-term monocentric data registry of patients with microsurgically treated unruptured intracranial aneurysms (UIAs) using a temporal train-test split. Temporal train-test splits allow to simulate prospective validation, and therefore provide more accurate estimations of a model's predictive quality when applied to future patients. ML models for the prediction of the Glasgow outcome scale, modified Rankin Scale (mRS), and new transient or permanent neurological deficits (output variables) were created from all UIA patients that underwent microsurgery at the Kepler University Hospital Linz (Austria) between 2002 and 2020 (n = 466), based on 18 patient- and 10 aneurysm-specific preoperative parameters (input variables). Train-test splitting was performed with a temporal split for outcome prediction in microsurgical therapy of UIA. Moreover, an external validation was conducted on an independent external data set (n = 256) of the Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf. In total, 722 aneurysms were included in this study. A postoperative mRS > 2 was best predicted by a quadratic discriminant analysis (QDA) estimator in the internal test set, with an area under the receiver operating characteristic curve (ROC-AUC) of 0.87 ± 0.03 and a sensitivity and specificity of 0.83 ± 0.08 and 0.71 ± 0.07, respectively. A Multilayer Perceptron predicted the post- to preoperative mRS difference > 1 with a ROC-AUC of 0.70 ± 0.02 and a sensitivity and specificity of 0.74 ± 0.07 and 0.50 ± 0.04, respectively. The QDA was the best model for predicting a permanent new neurological deficit with a ROC-AUC of 0.71 ± 0.04 and a sensitivity and specificity of 0.65 ± 0.24 and 0.60 ± 0.12, respectively. Furthermore, these models performed significantly better than the classic logistic regression models (p < 0.0001). The present results showed good performance in predicting functional and clinical outcomes after microsurgical therapy of UIAs in the internal data set, especially for the main outcome parameters, mRS and permanent neurological deficit. The external validation showed poor discrimination with ROC-AUC values of 0.61, 0.53 and 0.58 respectively for predicting a postoperative mRS > 2, a pre- and postoperative difference in mRS > 1 point and a GOS < 5. Therefore, generalizability of the models could not be demonstrated in the external validation. A SHapley Additive exPlanations (SHAP) analysis revealed that this is due to the most important features being distributed quite differently in the internal and external data sets. The implementation of newly available data and the merging of larger databases to form more broad-based predictive models is imperative in the future.

摘要

机器学习(ML)近年来彻底改变了数据处理方式。本研究展示了基于对接受显微手术治疗的未破裂颅内动脉瘤(UIAs)患者的长期单中心数据注册进行时间训练-测试分割的首个预测模型的结果。时间训练-测试分割允许模拟前瞻性验证,因此当应用于未来患者时,对模型预测质量的估计更加准确。使用来自 2002 年至 2020 年期间在奥地利林茨凯普勒大学医院接受显微手术的所有 UIA 患者(n=466)的 18 个患者和 10 个动脉瘤特异性术前参数(输入变量),创建了用于预测格拉斯哥结果量表、改良 Rankin 量表(mRS)和新的短暂或永久性神经功能缺损(输出变量)的 ML 模型。在显微外科治疗 UIA 中进行了基于时间的结局预测的训练-测试分割。此外,在汉堡-埃彭多夫大学医学中心神经外科的独立外部数据集(n=256)上进行了外部验证。在这项研究中总共纳入了 722 个动脉瘤。二次判别分析(QDA)估计器在内部测试集中最佳预测术后 mRS>2,接受者操作特征曲线(ROC-AUC)为 0.87±0.03,灵敏度和特异性分别为 0.83±0.08 和 0.71±0.07。多层感知器预测术前到术后 mRS 差值>1,ROC-AUC 为 0.70±0.02,灵敏度和特异性分别为 0.74±0.07 和 0.50±0.04。QDA 是预测永久性新神经功能缺损的最佳模型,ROC-AUC 为 0.71±0.04,灵敏度和特异性分别为 0.65±0.24 和 0.60±0.12。此外,这些模型的表现明显优于经典的逻辑回归模型(p<0.0001)。本研究结果显示,在内部数据集中小动脉瘤显微外科治疗后的功能和临床结局预测中表现良好,特别是对于主要结局参数 mRS 和永久性神经功能缺损。外部验证显示,预测术后 mRS>2、术前和术后 mRS 差值>1 点和 GOS<5 的 ROC-AUC 值分别为 0.61、0.53 和 0.58,区分度较差。因此,在外部验证中不能证明模型的泛化能力。SHapley Additive exPlanations(SHAP)分析表明,这是由于内部和外部数据集之间分布的最重要特征差异很大。未来必须实施新的可用数据并合并更大的数据库以形成更广泛的预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验