Suppr超能文献

用于多任务信号分析的注意力网络

Attention Networks for Multi-Task Signal Analysis.

作者信息

Ahmedt-Aristizabal David, Armin Mohammad Ali, Denman Simon, Fookes Clinton, Petersson Lars

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:184-187. doi: 10.1109/EMBC44109.2020.9175730.

Abstract

Recent advances in deep learning have enabled the development of automated frameworks for analysing medical images and signals. For analysis of physiological recordings, models based on temporal convolutional networks and recurrent neural networks have demonstrated encouraging results and an ability to capture complex patterns and dependencies in the data. However, representations that capture the entirety of the raw signal are suboptimal as not all portions of the signal are equally important. As such, attention mechanisms are proposed to divert focus to regions of interest, reducing computational cost and enhancing accuracy. Here, we evaluate attention-based frameworks for the classification of physiological signals in different clinical domains. We evaluated our methodology on three classification scenarios: neurogenerative disorders, neurological status and seizure type. We demonstrate that attention networks can outperform traditional deep learning models for sequence modelling by identifying the most relevant attributes of an input signal for decision making. This work highlights the benefits of attention-based models for analysing raw data in the field of biomedical research.

摘要

深度学习的最新进展推动了用于分析医学图像和信号的自动化框架的发展。对于生理记录分析,基于时间卷积网络和循环神经网络的模型已取得了令人鼓舞的成果,并具备捕捉数据中复杂模式和依赖性的能力。然而,捕获原始信号整体的表示方式并非最优,因为信号的所有部分并非同等重要。因此,人们提出了注意力机制,将注意力转移到感兴趣的区域,从而降低计算成本并提高准确性。在此,我们评估基于注意力的框架在不同临床领域对生理信号进行分类的效果。我们在三种分类场景下评估了我们的方法:神经退行性疾病、神经状态和癫痫发作类型。我们证明,注意力网络通过识别输入信号中与决策最相关的属性,在序列建模方面可以优于传统的深度学习模型。这项工作凸显了基于注意力的模型在生物医学研究领域分析原始数据的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验