Ahmedt-Aristizabal David, Fernando Tharindu, Denman Simon, Petersson Lars, Aburn Matthew J, Fookes Clinton
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:569-575. doi: 10.1109/EMBC44109.2020.9175641.
Classification of seizure type is a key step in the clinical process for evaluating an individual who presents with seizures. It determines the course of clinical diagnosis and treatment, and its impact stretches beyond the clinical domain to epilepsy research and the development of novel therapies. Automated identification of seizure type may facilitate understanding of the disease, and seizure detection and prediction have been the focus of recent research that has sought to exploit the benefits of machine learning and deep learning architectures. Nevertheless, there is not yet a definitive solution for automating the classification of seizure type, a task that must currently be performed by an expert epileptologist. Inspired by recent advances in neural memory networks (NMNs), we introduce a novel approach for the classification of seizure type using electrophysiological data. We first explore the performance of traditional deep learning techniques which use convolutional and recurrent neural networks, and enhance these architectures by using external memory modules with trainable neural plasticity. We show that our model achieves a state-of-the-art weighted F1 score of 0.945 for seizure type classification on the TUH EEG Seizure Corpus with the IBM TUSZ preprocessed data. This work highlights the potential of neural memory networks to support the field of epilepsy research, along with biomedical research and signal analysis more broadly.
癫痫发作类型的分类是评估癫痫患者临床过程中的关键步骤。它决定了临床诊断和治疗的进程,其影响不仅限于临床领域,还延伸到癫痫研究和新疗法的开发。癫痫发作类型的自动识别有助于对疾病的理解,癫痫发作的检测和预测一直是近期研究的重点,这些研究试图利用机器学习和深度学习架构的优势。然而,目前还没有一个确定的解决方案来实现癫痫发作类型分类的自动化,这项任务目前必须由癫痫专家来完成。受神经记忆网络(NMNs)近期进展的启发,我们提出了一种使用电生理数据进行癫痫发作类型分类的新方法。我们首先探索了使用卷积神经网络和循环神经网络的传统深度学习技术的性能,并通过使用具有可训练神经可塑性的外部记忆模块来增强这些架构。我们表明,在使用IBM TUSZ预处理数据的TUH EEG癫痫语料库上,我们的模型在癫痫发作类型分类方面实现了0.945的最优加权F1分数。这项工作突出了神经记忆网络在支持癫痫研究领域以及更广泛的生物医学研究和信号分析方面的潜力。