Suppr超能文献

用于宫颈癌分析的可解释注意力网络。

Towards Interpretable Attention Networks for Cervical Cancer Analysis.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3613-3616. doi: 10.1109/EMBC46164.2021.9629604.

Abstract

Recent advances in deep learning have enabled the development of automated frameworks for analysing medical images and signals, including analysis of cervical cancer. Many previous works focus on the analysis of isolated cervical cells, or do not offer explainable methods to explore and understand how the proposed models reach their classification decisions on multi-cell images which contain multiple cells. Here, we evaluate various state-of-the-art deep learning models and attention-based frameworks to classify multiple cervical cells. Our aim is to provide interpretable deep learning models by comparing their explainability through the gradients visualization. We demonstrate the importance of using images that contain multiple cells over using isolated single-cell images. We show the effectiveness of the residual channel attention model for extracting important features from a group of cells, and demonstrate this model's efficiency for multiple cervical cells classification. This work highlights the benefits of attention networks to exploit relations and distributions within multi-cell images for cervical cancer analysis. Such an approach can assist clinicians in understanding a model's prediction by providing interpretable results.

摘要

深度学习的最新进展使得开发用于分析医学图像和信号的自动化框架成为可能,包括对宫颈癌的分析。许多以前的工作都集中在分析孤立的宫颈细胞上,或者没有提供可解释的方法来探索和理解所提出的模型如何对包含多个细胞的多细胞图像做出分类决策。在这里,我们评估了各种最先进的深度学习模型和基于注意力的框架,以对多个宫颈细胞进行分类。我们的目的是通过比较梯度可视化来提供可解释的深度学习模型。我们通过使用包含多个细胞的图像证明了比使用孤立的单细胞图像更有意义。我们展示了残差通道注意力模型从一组细胞中提取重要特征的有效性,并证明了该模型对多个宫颈细胞分类的效率。这项工作强调了注意力网络在利用多细胞图像内部的关系和分布方面的优势,以便进行宫颈癌分析。这种方法可以通过提供可解释的结果来帮助临床医生理解模型的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验