Gao Yibo, Wang Huan, Liu Zuhao
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:316-319. doi: 10.1109/EMBC44109.2020.9175823.
Atrial fibrillation (AF) is a common heart rhythm which occurs when the upper chambers of the heart beat irregularly. With the rapid development of the deep learning algorithm, the Convolutional Neural Networks (CNN) is widely investigated for the ECG classification task. However, for AF detection, the performance of CNN is greatly limited due to the lack of consideration for temporal characteristic of the ECG signal. In order to improve the discriminative ability of CNN, we introduce the attention mechanism to help the network concentrate on the informative parts and obtain the temporal features of the signals. Inspired by this idea, we propose a temporal attention block (TA-block) and a temporal attention convolutional neural network (TACNN) for the AF detection tasks. The TA-block can adaptively learn the temporal features of the signal and generate the attention weights to enhance informative features. With a stack architecture of TA-blocks, the TA-CNN obtains better performance as a result of paying more attention to the informative parts of the signal. We validate our approach on the single lead ECG classification dataset of The PhysioNet Computing in Cardiology Challenge 2017. The experimental results indicate that the proposed framework outperform state-of-the-arts classification networks.Clinical Relevance-The proposed algorithm can be potentially applied to the portable cardiovascular monitoring devices reducing the danger of AF.
心房颤动(AF)是一种常见的心律,当心脏的上腔室不规则跳动时就会发生。随着深度学习算法的快速发展,卷积神经网络(CNN)在心电图分类任务中得到了广泛研究。然而,对于房颤检测,由于缺乏对心电图信号时间特征的考虑,CNN的性能受到很大限制。为了提高CNN的判别能力,我们引入注意力机制,帮助网络专注于信息丰富的部分并获取信号的时间特征。受此想法启发,我们提出了一种时间注意力模块(TA-block)和一种用于房颤检测任务的时间注意力卷积神经网络(TACNN)。TA-block可以自适应地学习信号的时间特征并生成注意力权重,以增强信息特征。通过TA-block的堆叠架构,TACNN由于更加关注信号的信息丰富部分而获得了更好的性能。我们在2017年生理网心脏病学计算挑战赛的单导联心电图分类数据集上验证了我们的方法。实验结果表明,所提出的框架优于现有分类网络。临床相关性——所提出的算法有可能应用于便携式心血管监测设备,降低房颤的风险。