Suppr超能文献

实时可穿戴式心电图监测中基于固定长度压缩心电图片段的多标签心律失常分类

Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring.

作者信息

Cheng Yunfei, Ye Yalan, Hou Mengshu, He Wenwen, Pan Tongjie

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:580-583. doi: 10.1109/EMBC44109.2020.9176188.

Abstract

Recently, classification from compressed physiological signals in compressed sensing has been successfully applied to cardiovascular disease monitoring. However, in real-time wearable electrocardiogram (ECG) monitoring, it is very difficult to directly obtain the heartbeats information from compressed ECG signals. Thus arrhythmia classification from compressed ECG signals has to be handled in fixed-length segments instead of individual heartbeats. An inevitable issue is that a fixed-length ECG segment may contain multiple different types of arrhythmia. As a result, it is not appropriate to represent the multi-type real arrhythmia with a single label. In this paper, we first introduce multiple labels into fixed-length compressed ECG segments to challenge the arrhythmia classification issue. Then, we propose a deep learning model, which can directly classify multiple different types of arrhythmia from fixed-length compressed ECG segments with the advantages of low time cost for data processing and relatively high classification accuracy at a high compression ratio. Experimental results on the MIT-BIH arrhythmia database show that the exact match rate of our proposed method has reached 96.03% at CR(Compression Ratio)=70%, 94.99% at CR=80% and 93.19% at CR=90%.

摘要

最近,压缩感知中压缩生理信号的分类已成功应用于心血管疾病监测。然而,在实时可穿戴心电图(ECG)监测中,很难直接从压缩的ECG信号中获取心跳信息。因此,从压缩ECG信号中进行心律失常分类必须在固定长度的片段中进行,而不是针对单个心跳。一个不可避免的问题是,固定长度的ECG片段可能包含多种不同类型的心律失常。因此,用单个标签来表示多类型的实际心律失常是不合适的。在本文中,我们首先将多个标签引入固定长度的压缩ECG片段中,以应对心律失常分类问题。然后,我们提出了一种深度学习模型,该模型可以直接从固定长度的压缩ECG片段中对多种不同类型的心律失常进行分类,具有数据处理时间成本低和在高压缩率下分类准确率相对较高的优点。在MIT-BIH心律失常数据库上的实验结果表明,我们提出的方法在压缩率(CR)=70%时精确匹配率达到96.03%,在CR=80%时为94.99%,在CR=90%时为93.19%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验