Suppr超能文献

一种用于小儿肺部听诊的信号质量客观测量方法。

An objective measure of signal quality for pediatric lung auscultations.

作者信息

Kala Annapurna, Husain Amyna, McCollum Eric D, Elhilali Mounya

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:772-775. doi: 10.1109/EMBC44109.2020.9176539.

Abstract

A stethoscope is a ubiquitous tool used to 'listen' to sounds from the chest in order to assess lung and heart conditions. With advances in health technologies including digital devices and new wearable sensors, access to these sounds is becoming easier and abundant; yet proper measures of signal quality do not exist. In this work, we develop an objective quality metric of lung sounds based on low-level and high-level features in order to independently assess the integrity of the signal in presence of interference from ambient sounds and other distortions. The proposed metric outlines a mapping of auscultation signals onto rich low-level features extracted directly from the signal which capture spectral and temporal characteristics of the signal. Complementing these signal-derived attributes, we propose high-level learnt embedding features extracted from a generative auto-encoder trained to map auscultation signals onto a representative space that best captures the inherent statistics of lung sounds. Integrating both low-level (signal-derived) and high-level (embedding) features yields a robust correlation of 0.85 to infer the signal-to-noise ratio of recordings with varying quality levels. The method is validated on a large dataset of lung auscultation recorded in various clinical settings with controlled varying degrees of noise interference. The proposed metric is also validated against opinions of expert physicians in a blind listening test to further corroborate the efficacy of this method for quality assessment.

摘要

听诊器是一种普遍使用的工具,用于“聆听”胸部声音以评估肺部和心脏状况。随着包括数字设备和新型可穿戴传感器在内的健康技术的进步,获取这些声音变得更加容易且丰富;然而,目前还没有合适的信号质量衡量标准。在这项工作中,我们基于低级和高级特征开发了一种肺部声音的客观质量指标,以便在存在环境声音干扰和其他失真的情况下独立评估信号的完整性。所提出的指标概述了听诊信号到直接从信号中提取的丰富低级特征的映射,这些特征捕获了信号的频谱和时间特征。作为这些信号衍生属性的补充,我们提出了从生成式自动编码器中提取的高级学习嵌入特征,该编码器经过训练将听诊信号映射到一个代表性空间,该空间能最好地捕获肺部声音的固有统计信息。整合低级(信号衍生)和高级(嵌入)特征可产生0.85的稳健相关性,以推断不同质量水平记录的信噪比。该方法在各种临床环境中记录的、具有不同程度噪声干扰控制的大型肺部听诊数据集上得到了验证。在盲听测试中,所提出的指标也针对专家医生的意见进行了验证,以进一步证实该方法用于质量评估的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验