Suppr超能文献

大肠杆菌钼酸盐转运操纵子modABCD响应钼酸盐可利用性的调控

Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability.

作者信息

Rech S, Deppenmeier U, Gunsalus R P

机构信息

Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024.

出版信息

J Bacteriol. 1995 Feb;177(4):1023-9. doi: 10.1128/jb.177.4.1023-1029.1995.

Abstract

The mod (chlD) locus at 17 min on the Escherichia coli chromosome encodes a high-affinity molybdate uptake system. To further investigate the structure and regulation of these genes, the DNA region upstream of the previously identified modBC (chlJD) genes was cloned and sequenced. A single open reading frame, designated modA, was identified and appears to encode a periplasmic binding protein for the molybdate uptake system. To determine how the mod genes are regulated in response to molybdate, nitrate, and oxygen, we constructed a series of mod-lacZ operon fusions to the upstream region and introduced them in single copy onto the E. coli chromosome. Whereas molybdate limitation resulted in elevated mod-lacZ expression, neither oxygen nor nitrate had any significant effect on gene expression. A regulatory motif, CATAA, located at the modA promoter was identified and shown to be required for molybdate-dependent control of the modABCD operon. Mutations within this sequence resulted in nearly complete derepression of gene expression and suggest that transcription of the operon is mediated by a molybdenum-responsive regulatory protein.

摘要

大肠杆菌染色体上17分钟处的mod(chlD)位点编码一种高亲和力的钼酸盐摄取系统。为了进一步研究这些基因的结构和调控,对先前鉴定的modBC(chlJD)基因上游的DNA区域进行了克隆和测序。鉴定出一个单一的开放阅读框,命名为modA,它似乎编码钼酸盐摄取系统的周质结合蛋白。为了确定mod基因如何响应钼酸盐、硝酸盐和氧气进行调控,我们构建了一系列mod-lacZ操纵子融合体到上游区域,并将它们单拷贝导入大肠杆菌染色体。虽然钼酸盐限制导致mod-lacZ表达升高,但氧气和硝酸盐对基因表达均无显著影响。在modA启动子处鉴定出一个调控基序CATAA,它被证明是modABCD操纵子依赖钼酸盐调控所必需的。该序列内的突变导致基因表达几乎完全去阻遏,这表明操纵子的转录由一种钼响应调节蛋白介导。

相似文献

3
Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene.
Microbiol Res. 1995 Nov;150(4):347-61. doi: 10.1016/S0944-5013(11)80016-9.
4
ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli.
J Bacteriol. 2000 Dec;182(24):7035-43. doi: 10.1128/JB.182.24.7035-7043.2000.
6
Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli.
J Bacteriol. 1995 Sep;177(17):4851-6. doi: 10.1128/jb.177.17.4851-4856.1995.
9
Repression of the Escherichia coli modABCD (molybdate transport) operon by ModE.
J Bacteriol. 1996 Feb;178(3):735-44. doi: 10.1128/jb.178.3.735-744.1996.

引用本文的文献

2
Heliorhodopsin-mediated light-modulation of ABC transporter.
Nat Commun. 2024 May 21;15(1):4306. doi: 10.1038/s41467-024-48650-1.
3
[Construction and characterization of a gene mutant strain of ].
Nan Fang Yi Ke Da Xue Xue Bao. 2024 Apr 20;44(4):748-756. doi: 10.12122/j.issn.1673-4254.2024.04.17.
4
Solution NMR chemical shift assignment of apo and molybdate-bound ModA at two pHs.
Biomol NMR Assign. 2024 Jun;18(1):93-98. doi: 10.1007/s12104-024-10173-7. Epub 2024 Apr 20.
5
The repertoire of ABC proteins in .
Comput Struct Biotechnol J. 2021 May 8;19:2905-2920. doi: 10.1016/j.csbj.2021.05.012. eCollection 2021.
6
The role of solute binding proteins in signal transduction.
Comput Struct Biotechnol J. 2021 Mar 26;19:1786-1805. doi: 10.1016/j.csbj.2021.03.029. eCollection 2021.
7
Antimicrobial Resistance and Virulence Profiling of Strains From German Water Poultry.
Front Microbiol. 2020 Dec 14;11:617685. doi: 10.3389/fmicb.2020.617685. eCollection 2020.
8
Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria.
Front Microbiol. 2020 Dec 11;11:615860. doi: 10.3389/fmicb.2020.615860. eCollection 2020.
9
from Water Poultry: Insights into Antimicrobial Resistance, Virulence and Heavy Metal Resistance.
Genes (Basel). 2020 Sep 21;11(9):1104. doi: 10.3390/genes11091104.
10
Highly selective tungstate transporter protein TupA from Desulfovibrio alaskensis G20.
Sci Rep. 2017 Jul 19;7(1):5798. doi: 10.1038/s41598-017-06133-y.

本文引用的文献

1
Molybdenum uptake in Escherichia coli K12.
J Gen Microbiol. 1993 Aug;139(8):1869-75. doi: 10.1099/00221287-139-8-1869.
2
Characterization of genes involved in molybdenum transport in Azotobacter vinelandii.
Mol Microbiol. 1993 Feb;7(3):447-59. doi: 10.1111/j.1365-2958.1993.tb01136.x.
3
Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis.
Mol Microbiol. 1993 Jun;8(6):1071-81. doi: 10.1111/j.1365-2958.1993.tb01652.x.
5
Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci.
J Bacteriol. 1982 Aug;151(2):788-99. doi: 10.1128/jb.151.2.788-799.1982.
6
Sequence of the malK gene in E.coli K12.
Nucleic Acids Res. 1982 Nov 25;10(22):7449-58. doi: 10.1093/nar/10.22.7449.
7
Rapid and efficient site-specific mutagenesis without phenotypic selection.
Proc Natl Acad Sci U S A. 1985 Jan;82(2):488-92. doi: 10.1073/pnas.82.2.488.
8
Improved single and multicopy lac-based cloning vectors for protein and operon fusions.
Gene. 1987;53(1):85-96. doi: 10.1016/0378-1119(87)90095-3.
9
Cloning and nucleotide sequence of the chlD locus.
J Bacteriol. 1987 May;169(5):1911-6. doi: 10.1128/jb.169.5.1911-1916.1987.
10
Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.
J Bacteriol. 1987 Aug;169(8):3720-5. doi: 10.1128/jb.169.8.3720-3725.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验