Choi Kihwan, Choi Seong Ji, Kim Eun Sun
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1156-1159. doi: 10.1109/EMBC44109.2020.9176653.
Detection, diagnosis, and removal of colorectal neoplasms are well-accepted colorectal cancer prevention methods. Although promising endoscopic imaging techniques including narrow-band imaging have been developed, these techniques are operator-dependent and interpretations of the results may vary. To overcome these limitations, we applied deep learning to develop a computer-aided diagnostic (CAD) system of colorectal adenoma. We collected and divided 3000 colonoscopic images into 4 categories according to the final pathology, normal, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. We implemented three convolutional neural networks (CNNs) using Inception-v3, ResNet-50, and DenseNet-161 as baseline models. We further altered the models using several strategies: replacement of the top layer, transfer learning from pre-trained models, fine-tuning of the model weights, rebalancing and augmentation of the training data, and 10-fold cross-validation. We compared the outcomes of the three CNN models to those of two endoscopist groups having different years of experience, and visualized the model predictions using Class Activation Mapping (CAM). The CNN-CAD achieved the best performance in our experiments with a 92.48% classification accuracy rate. The CNN-CAD results showed a better performance in all criteria than those of endoscopic experts. The model visualization results showed reasonable regions of interest to explain pathology classification decisions. We demonstrated that CNN-CAD can distinguish the pathology of colorectal adenoma, yielding better outcomes than the endoscopic experts group.
检测、诊断和切除结直肠肿瘤是公认的结直肠癌预防方法。尽管已经开发出了包括窄带成像在内的有前景的内镜成像技术,但这些技术依赖于操作人员,且结果的解读可能存在差异。为了克服这些局限性,我们应用深度学习开发了一种结直肠腺瘤的计算机辅助诊断(CAD)系统。我们根据最终病理结果将3000张结肠镜图像收集并分为4类:正常、低级别异型增生、高级别异型增生和腺癌。我们使用Inception-v3、ResNet-50和DenseNet-161作为基线模型实现了三个卷积神经网络(CNN)。我们进一步使用了几种策略对模型进行修改:替换顶层、从预训练模型进行迁移学习、微调模型权重、重新平衡和扩充训练数据以及10折交叉验证。我们将这三个CNN模型的结果与两组具有不同经验年限的内镜医师的结果进行了比较,并使用类激活映射(CAM)对模型预测进行了可视化。在我们的实验中,CNN-CAD取得了最佳性能,分类准确率达到92.48%。CNN-CAD的结果在所有标准上都比内镜专家的结果表现更好。模型可视化结果显示了合理的感兴趣区域,以解释病理分类决策。我们证明了CNN-CAD能够区分结直肠腺瘤的病理情况,其结果优于内镜专家组。