Uslu Fatmatulzehra, Varela Marta, Bharath Anil A
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1198-1202. doi: 10.1109/EMBC44109.2020.9175749.
Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with dramatic increases in mortality and morbidity. Atrial cine MR images are increasingly used in the management of this condition, but there are few specific tools to aid in the segmentation of such data. Some characteristics of atrial cine MR (thick slices, variable number of slices in a volume) preclude the direct use of traditional segmentation tools. When combined with scarcity of labelled data and similarity of the intensity and texture of the left atrium (LA) to other cardiac structures, the segmentation of the LA in CINE MRI becomes a difficult task. To deal with these challenges, we propose a semi-automatic method to segment the left atrium (LA) in MR images, which requires an initial user click per volume. The manually given location information is used to generate a chamber location map to roughly locate the LA, which is then used as an input to a deep network with slightly over 0.5 million parameters. A tracking method is introduced to pass the location information across a volume and to remove unwanted structures in segmentation maps. According to the results of our experiments conducted in an in-house MRI dataset, the proposed method outperforms the U-Net [1] with a margin of 20 mm on Hausdorff distance and 0.17 on Dice score, with limited manual interaction.
心房颤动(AF)是最常见的持续性心律失常,与死亡率和发病率的显著增加相关。心房电影磁共振成像(MR)图像在这种疾病的管理中越来越常用,但用于辅助分割此类数据的特定工具很少。心房电影MR的一些特征(厚切片、一个容积中切片数量可变)使得传统分割工具无法直接使用。再加上标记数据稀缺以及左心房(LA)与其他心脏结构在强度和纹理上的相似性,在电影磁共振成像中分割LA成为一项艰巨任务。为应对这些挑战,我们提出一种半自动方法来分割MR图像中的左心房(LA),该方法每个容积需要用户进行一次初始点击。手动给出的位置信息用于生成一个腔室位置图以大致定位LA,然后将其用作一个参数略超过50万的深度网络的输入。引入一种跟踪方法以在一个容积中传递位置信息并去除分割图中不需要的结构。根据我们在内部MR数据集上进行的实验结果,所提出的方法在豪斯多夫距离上比U-Net[1]高出20毫米,在骰子系数上高出0.17,且人工交互有限。