IEEE Trans Med Imaging. 2022 Feb;41(2):456-464. doi: 10.1109/TMI.2021.3117495. Epub 2022 Feb 2.
Although atrial fibrillation (AF) is the most common sustained atrial arrhythmia, treatment success for this condition remains suboptimal. Information from magnetic resonance imaging (MRI) has the potential to improve treatment efficacy, but there are currently few automatic tools for the segmentation of the atria in MR images. In the study, we propose a LA-Net, a multi-task network optimised to simultaneously generate left atrial segmentation and edge masks from MRI. LA-Net includes cross attention modules (CAMs) and enhanced decoder modules (EDMs) to purposefully select the most meaningful edge information for segmentation and smoothly incorporate it into segmentation masks at multiple-scales. We evaluate the performance of LA-Net on two MR sequences: late gadolinium enhanced (LGE) atrial MRI and atrial short axis balanced steady state free precession (bSSFP) MRI. LA-Net gives Hausdorff distances of 12.43 mm and Dice scores of 0.92 on the LGE (STACOM 2018) dataset and Hausdorff distances of 17.41 mm and Dice scores of 0.90 on the bSSFP (in-house) dataset without any post-processing, surpassing previously proposed segmentation networks, including U-Net and SEGANet. Our method allows automatic extraction of information about the LA from MR images, which can play an important role in the management of AF patients.
尽管心房颤动(AF)是最常见的持续性心房心律失常,但该病症的治疗效果仍不理想。磁共振成像(MRI)提供的信息有可能提高治疗效果,但目前用于 MRI 中心房分割的自动工具却很少。在这项研究中,我们提出了一种 LA-Net,这是一种经过优化的多任务网络,可以从 MRI 中同时生成左心房分割和边缘掩模。LA-Net 包括交叉注意模块(CAM)和增强解码器模块(EDM),旨在有针对性地选择最有意义的边缘信息进行分割,并在多个尺度上平滑地将其合并到分割掩模中。我们在两种 MRI 序列上评估了 LA-Net 的性能:晚期钆增强(LGE)心房 MRI 和心房短轴平衡稳态自由进动(bSSFP)MRI。LA-Net 在 LGE(STACOM 2018)数据集上的 Hausdorff 距离为 12.43mm,Dice 分数为 0.92,在 bSSFP(内部)数据集上的 Hausdorff 距离为 17.41mm,Dice 分数为 0.90,无需任何后处理,优于之前提出的分割网络,包括 U-Net 和 SEGANet。我们的方法允许从 MRI 图像中自动提取有关左心房的信息,这在 AF 患者的管理中可能发挥重要作用。