Suppr超能文献

基于不确定性引导的对称多级监督网络的钆增强 MRI 晚期左心房分割。

Uncertainty-guided symmetric multilevel supervision network for 3D left atrium segmentation in late gadolinium-enhanced MRI.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.

School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China.

出版信息

Med Phys. 2022 Jul;49(7):4554-4565. doi: 10.1002/mp.15670. Epub 2022 Apr 29.

Abstract

PURPOSE

Atrial fibrillation (AF) is a common arrhythmia and requires volumetric imaging to guide the therapy procedure. Late gadolinium-enhanced magnetic resonance imaging (LGE MRI) is an efficient noninvasive technology for imaging the diseased heart. Three-dimensional segmentation of the left atrium (LA) in LGE MRI is a fundamental step for guiding the therapy of patients with AF. However, the low contrast and fuzzy surface of the LA in LGE MRI make accurate and objective LA segmentation a challenge. The purpose of this study is to propose an automatic and efficient LA segmentation model based on a convolutional neural network to obtain a more accurate predicted surface and improve the LA segmentation results.

METHODS

In this study, we proposed an uncertainty-guided symmetric multilevel supervision (SML) network for 3D LA segmentation in LGE MRI. First, we constructed an SML structure to combine the corresponding features from the encoding and decoding stages to learn the multiscale representation of LA. Second, we formulated the discrepancy of predictions of our model as model uncertainty. Then we proposed an uncertainty-guided objective function to further increase the segmentation accuracy on the surface.

RESULTS

We evaluated our proposed model on the public LA segmentation database using four universal metrics. The proposed model achieved Hausdorff Distance (HD) of 11.68 mm, average symmetric surface distance of 0.92 mm, Dice score of 0.92, and Jaccard of 0.85. Compared with state-of-the-art models, our model achieved the best HD that is sensitive to surface accuracy. For the other three metrics, our model also achieved better or comparable performance.

CONCLUSIONS

We proposed an efficient automatic LA segmentation model that consisted of an SML structure and an uncertainty-guided objective function. Compared to other models, we designed an additional supervision branch in the encoding stage to learn more detailed representations of LA while learning global context information through the multilevel structure of each supervision branch. To address the fuzzy surface challenge of LA segmentation in LGE MRI, we leveraged the model uncertainty to enhance the distinguishing ability of the model on the surface, thereby the predicted accuracy of the LA surface can be further increased. We conducted extensive ablation and comparative experiments with state-of-the-art models. The experiment results demonstrated that our proposed model could handle the complex structure of LA and had superior advantages in improving the segmentation performance on the surface.

摘要

目的

心房颤动(AF)是一种常见的心律失常,需要容积成像来指导治疗过程。钆延迟增强磁共振成像(LGE MRI)是一种用于成像病变心脏的高效无创技术。LGE MRI 中的左心房(LA)的三维分割是指导 AF 患者治疗的基本步骤。然而,LGE MRI 中 LA 的对比度低且表面模糊,使得准确和客观的 LA 分割具有挑战性。本研究旨在提出一种基于卷积神经网络的自动高效 LA 分割模型,以获得更准确的预测表面并提高 LA 分割结果。

方法

在这项研究中,我们提出了一种不确定性引导的对称多级监督(SML)网络,用于 LGE MRI 中的 3D LA 分割。首先,我们构建了一个 SML 结构,以结合来自编码和解码阶段的对应特征,从而学习 LA 的多尺度表示。其次,我们将模型预测的差异表示为模型不确定性。然后,我们提出了一个不确定性引导的目标函数,以进一步提高表面上的分割准确性。

结果

我们使用四个通用指标在公共 LA 分割数据库上评估了我们提出的模型。所提出的模型达到了 11.68mm 的 Hausdorff 距离(HD)、0.92mm 的平均对称表面距离、0.92 的 Dice 分数和 0.85 的 Jaccard 分数。与最先进的模型相比,我们的模型达到了对表面精度敏感的最佳 HD。对于其他三个指标,我们的模型也实现了更好或相当的性能。

结论

我们提出了一种高效的自动 LA 分割模型,该模型由 SML 结构和不确定性引导的目标函数组成。与其他模型相比,我们在编码阶段设计了一个额外的监督分支,通过每个监督分支的多级结构来学习 LA 的更详细表示,同时学习全局上下文信息。为了解决 LGE MRI 中 LA 分割的模糊表面挑战,我们利用模型不确定性来增强模型在表面上的区分能力,从而进一步提高 LA 表面的预测准确性。我们进行了广泛的消融和与最先进模型的对比实验。实验结果表明,我们提出的模型能够处理 LA 的复杂结构,并且在提高表面分割性能方面具有优势。

相似文献

6
LA-Net: A Multi-Task Deep Network for the Segmentation of the Left Atrium.LA-Net:用于左心房分割的多任务深度网络。
IEEE Trans Med Imaging. 2022 Feb;41(2):456-464. doi: 10.1109/TMI.2021.3117495. Epub 2022 Feb 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验