Suppr超能文献

基于深度学习的房间隔封堵术前、后患者磁共振图像心脏腔室分割

Cardiac Chamber Segmentation Using Deep Learning on Magnetic Resonance Images from Patients Before and After Atrial Septal Occlusion Surgery.

作者信息

Lu Yu, Fu Xianghua, Li Xiaoqing, Qi Yingjian

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1211-1216. doi: 10.1109/EMBC44109.2020.9175618.

Abstract

We propose a robust technique for segmenting magnetic resonance images of post-atrial septal occlusion intervention in the cardiac chamber. The technique can be used to determine the surgical outcomes of atrial septal defects before and after implantation of a septal occluder, which intends to provide volume restoration of the right and left atria. A variant of the U-Net architecture is used to perform atrial segmentation via a deep convolutional neural network. The method was evaluated on a dataset containing 550 two-dimensional image slices, outperforming conventional active contouring regarding the Dice similarity coefficient, Jaccard index, and Hausdorff distance, and achieving segmentation in the presence of ghost artifacts that occlude the atrium outline. Moreover, the proposed technique is closer to manual segmentation than the snakes active contour model. After segmentation, we computed the volume ratio of right to left atria, obtaining a smaller ratio that indicates better restoration. Hence, the proposed technique allows to evaluate the surgical success of atrial septal occlusion and may support diagnosis regarding the accurate evaluation of atrial septal defects before and after occlusion procedures.

摘要

我们提出了一种用于分割心腔内房间隔封堵干预磁共振图像的稳健技术。该技术可用于确定在植入旨在恢复左右心房容积的间隔封堵器前后房间隔缺损的手术效果。使用U-Net架构的一个变体通过深度卷积神经网络进行心房分割。该方法在包含550个二维图像切片的数据集上进行了评估,在骰子相似系数、杰卡德指数和豪斯多夫距离方面优于传统的主动轮廓法,并且在存在遮挡心房轮廓的重影伪影的情况下实现了分割。此外,所提出的技术比蛇形主动轮廓模型更接近手动分割。分割后,我们计算了右心房与左心房的容积比,得到的较小比值表明恢复效果更好。因此,所提出的技术能够评估房间隔封堵的手术成功率,并且可能有助于在封堵手术前后对房间隔缺损进行准确评估的诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验