Suppr超能文献

使用带有无迹卡尔曼滤波器的深度卷积神经网络,从解剖学电影长轴 MRI 序列全自动分割左心房。

Fully automated left atrium segmentation from anatomical cine long-axis MRI sequences using deep convolutional neural network with unscented Kalman filter.

机构信息

Department of Electrical and Computer Engineering, University of California, Los Angeles, United States; Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada; Servier Virtual Cardiac Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada.

Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada; Servier Virtual Cardiac Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada.

出版信息

Med Image Anal. 2021 Feb;68:101916. doi: 10.1016/j.media.2020.101916. Epub 2020 Nov 26.

Abstract

This study proposes a fully automated approach for the left atrial segmentation from routine cine long-axis cardiac magnetic resonance image sequences using deep convolutional neural networks and Bayesian filtering. The proposed approach consists of a classification network that automatically detects the type of long-axis sequence and three different convolutional neural network models followed by unscented Kalman filtering (UKF) that delineates the left atrium. Instead of training and predicting all long-axis sequence types together, the proposed approach first identifies the image sequence type as to 2, 3 and 4 chamber views, and then performs prediction based on neural nets trained for that particular sequence type. The datasets were acquired retrospectively and ground truth manual segmentation was provided by an expert radiologist. In addition to neural net based classification and segmentation, another neural net is trained and utilized to select image sequences for further processing using UKF to impose temporal consistency over cardiac cycle. A cyclic dynamic model with time-varying angular frequency is introduced in UKF to characterize the variations in cardiac motion during image scanning. The proposed approach was trained and evaluated separately with varying amount of training data with images acquired from 20, 40, 60 and 80 patients. Evaluations over 1515 images with equal number of images from each chamber group acquired from an additional 20 patients demonstrated that the proposed model outperformed state-of-the-art and yielded a mean Dice coefficient value of 94.1%, 93.7% and 90.1% for 2, 3 and 4-chamber sequences, respectively, when trained with datasets from 80 patients.

摘要

本研究提出了一种完全自动化的方法,用于使用深度卷积神经网络和贝叶斯滤波从常规电影长轴心脏磁共振图像序列中分割左心房。所提出的方法包括一个分类网络,该网络自动检测长轴序列的类型,以及三个不同的卷积神经网络模型,然后使用无迹卡尔曼滤波(UKF)描绘左心房。所提出的方法不是一起训练和预测所有长轴序列类型,而是首先识别图像序列类型为 2 腔、3 腔和 4 腔视图,然后根据针对特定序列类型训练的神经网络进行预测。数据集是回顾性采集的,由专家放射科医生提供手动分割的真实数据。除了基于神经网络的分类和分割外,还训练和利用另一个神经网络来选择使用 UKF 进行进一步处理的图像序列,以在整个心动周期内施加时间一致性。在 UKF 中引入了具有时变角频率的循环动态模型,以描述在图像扫描过程中心脏运动的变化。所提出的方法分别使用不同数量的训练数据进行训练和评估,这些数据来自 20、40、60 和 80 名患者的图像。在另外 20 名患者的相同数量的每个腔室组的 1515 张图像上进行评估表明,与最先进的方法相比,所提出的模型表现更好,当使用来自 80 名患者的数据集进行训练时,分别为 2 腔、3 腔和 4 腔序列产生了 94.1%、93.7%和 90.1%的平均骰子系数值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验