Suppr超能文献

面向所有人的人工智能胸部(检测)

AI Chest 4 All.

作者信息

Thammarach P, Khaengthanyakan S, Vongsurakrai S, Phienphanich P, Pooprasert P, Yaemsuk A, Vanichvarodom P, Munpolsri N, Khwayotha S, Lertkowit M, Tungsagunwattana S, Vijitsanguan C, Lertrojanapunya S, Noisiri W, Chiawiriyabunya I, Aphikulvanich N, Tantibundhit C

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1229-1233. doi: 10.1109/EMBC44109.2020.9175862.

Abstract

AIChest4All is the name of the model used to label and screening diseases in our area of focus, Thailand, including heart disease, lung cancer, and tuberculosis. This is aimed to aid radiologist in Thailand especially in rural areas, where there is immense staff shortages. Deep learning is used in our methodology to classify the chest X-ray images from datasets namely, NIH set, which is separated into 14 observations, and the Montgomery and Shenzhen set, which contains chest X-ray images of patients with tuberculosis, further supplemented by the dataset from Udonthani Cancer hospital and the National Chest Institute of Thailand. The images are classified into six categories: no finding, suspected active tuberculosis, suspected lung malignancy, abnormal heart and great vessels, Intrathoracic abnormal findings, and Extrathroacic abnormal findings. A total of 201,527 images were used. Results from testing showed that the accuracy values of the categories heart disease, lung cancer, and tuberculosis were 94.11%, 93.28%, and 92.32%, respectively with sensitivity values of 90.07%, 81.02%, and 82.33%, respectively and the specificity values were 94.65%, 94.04%, and 93.54%, respectively. In conclusion, the results acquired have sufficient accuracy, sensitivity, and specificity values to be used. Currently, AIChest4All is being used to help several of Thailand's government funded hospitals, free of charge.Clinical relevance- AIChest4All is aimed to aid radiologist in Thailand especially in rural areas, where there is immense staff shortages. It is being used to help several of Thailand's goverment funded hospitals, free of charege to screening heart disease, lung cancer, and tubeculosis with 94.11%, 93.28%, and 92.32% accuracy.

摘要

AIChest4All是用于在我们的重点关注地区泰国对疾病进行标注和筛查的模型名称,这些疾病包括心脏病、肺癌和结核病。这旨在帮助泰国的放射科医生,尤其是在农村地区,那里存在严重的人员短缺。我们的方法中使用深度学习对胸部X光图像进行分类,数据集包括NIH数据集(分为14个观测值)以及蒙哥马利和深圳数据集(包含结核病患者的胸部X光图像),此外还补充了乌隆他尼癌症医院和泰国国家胸部研究所的数据集。图像被分为六类:未见异常、疑似活动性结核病、疑似肺恶性肿瘤、心脏和大血管异常、胸内异常发现以及胸外异常发现。总共使用了201,527张图像。测试结果表明,心脏病、肺癌和结核病类别的准确率分别为94.11%、93.28%和92.32%,敏感度分别为90.07%、81.02%和82.33%,特异度分别为94.65%、94.04%和93.54%。总之,所获得的结果具有足够的准确率、敏感度和特异度值可供使用。目前,AIChest4All正免费用于帮助泰国几家由政府资助的医院。临床相关性——AIChest4All旨在帮助泰国的放射科医生,尤其是在人员严重短缺的农村地区。它正免费用于帮助泰国几家由政府资助的医院筛查心脏病、肺癌和结核病,准确率分别为94.11%、93.28%和92.32%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验