Suppr超能文献

基于 frontal chest radiographs 的自动肺结核筛查中的特征选择。

Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs.

机构信息

Central Washington University, Ellensburg, WA, USA.

IBM Almaden Research, San Jose, CA, USA.

出版信息

J Med Syst. 2018 Jun 29;42(8):146. doi: 10.1007/s10916-018-0991-9.

Abstract

To detect pulmonary abnormalities such as Tuberculosis (TB), an automatic analysis and classification of chest radiographs can be used as a reliable alternative to more sophisticated and technologically demanding methods (e.g. culture or sputum smear analysis). In target areas like Kenya TB is highly prevalent and often co-occurring with HIV combined with low resources and limited medical assistance. In these regions an automatic screening system can provide a cost-effective solution for a large rural population. Our completely automatic TB screening system is processing the incoming CXRs (chest X-ray) by applying image preprocessing techniques to enhance the image quality followed by an adaptive segmentation based on model selection. The delineated lung regions are described by a multitude of image features. These characteristics are than optimized by a feature selection strategy to provide the best description for the classifier, which will later decide if the analyzed image is normal or abnormal. Our goal is to find the optimal feature set from a larger pool of generic image features, -used originally for problems such as object detection, image retrieval, etc. For performance evaluation measures such as under the curve (AUC) and accuracy (ACC) were considered. Using a neural network classifier on two publicly available data collections, -namely the Montgomery and the Shenzhen dataset, we achieved the maximum area under the curve and accuracy of 0.99 and 97.03%, respectively. Further, we compared our results with existing state-of-the-art systems and to radiologists' decision.

摘要

为了检测肺部异常,如结核病 (TB),可以使用胸部 X 光的自动分析和分类作为更复杂和技术要求更高的方法(例如培养或痰液涂片分析)的可靠替代方法。在肯尼亚等目标地区,结核病的发病率很高,通常与 HIV 同时发生,再加上资源有限和医疗援助有限。在这些地区,自动筛查系统可以为大量农村人口提供具有成本效益的解决方案。我们的完全自动化 TB 筛查系统通过应用图像预处理技术来增强图像质量来处理传入的 CXR(胸部 X 射线),然后根据模型选择进行自适应分割。描绘的肺部区域由大量图像特征描述。然后,通过特征选择策略对这些特征进行优化,以为分类器提供最佳描述,分类器将稍后决定分析的图像是否正常或异常。我们的目标是从用于对象检测、图像检索等问题的更大的通用图像特征池中找到最佳特征集。为了进行性能评估,考虑了曲线下面积 (AUC) 和准确性 (ACC) 等指标。我们使用神经网络分类器对两个公开可用的数据集,即蒙哥马利数据集和深圳数据集进行了评估,分别达到了 0.99 和 97.03%的最大 AUC 和准确性。此外,我们将结果与现有的最先进系统和放射科医生的决策进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验