Suppr超能文献

用于胸部X光预处理的Y-Net:几何形状的同步分类与标注分割

Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of Geometry and Segmentation of Annotations.

作者信息

McManigle John E, Bartz Raquel R, Carin Lawrence

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1266-1269. doi: 10.1109/EMBC44109.2020.9176334.

Abstract

Over the last decade, convolutional neural networks (CNNs) have emerged as the leading algorithms in image classification and segmentation. Recent publication of large medical imaging databases have accelerated their use in the biomedical arena. While training data for photograph classification benefits from aggressive geometric augmentation, medical diagnosis - especially in chest radiographs - depends more strongly on feature location. Diagnosis classification results may be artificially enhanced by reliance on radiographic annotations. This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms. A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation (similarity transform parameters) of the chest and segmentation of radiographic annotations. Chest x-rays were obtained from published databases. The algorithm was trained with 1000 manually labeled images with augmentation. Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2% (n = 500), compared to 27.0% and 34.9% respectively in control images (n = 241). We hypothesize that this pre-processing step will improve robustness in future diagnostic algorithms.Clinical relevance-This work demonstrates a universal pre-processing step for chest radiographs - both normalizing geometry and masking radiographic annotations - for use prior to further analysis.

摘要

在过去十年中,卷积神经网络(CNN)已成为图像分类和分割领域的领先算法。大型医学影像数据库的近期发布加速了其在生物医学领域的应用。虽然照片分类的训练数据受益于积极的几何增强,但医学诊断——尤其是在胸部X光片中——更强烈地依赖于特征位置。依赖X光片注释可能会人为地提高诊断分类结果。这项工作引入了一个将胸部X光输入机器学习算法的通用预处理步骤。基于VGG11编码器的改进型Y-Net架构用于同时学习胸部的几何方向(相似性变换参数)和X光片注释的分割。胸部X光片来自已发布的数据库。该算法使用1000张经过增强的手动标注图像进行训练。结果由专家临床医生评估,与对照图像(n = 241)中分别为27.0%和34.9%相比,可接受几何形状的比例为95.8%,注释掩码的比例为96.2%(n = 500)。我们假设这一预处理步骤将提高未来诊断算法的稳健性。临床相关性——这项工作展示了一种针对胸部X光片的通用预处理步骤——既规范化几何形状又屏蔽X光片注释——以便在进一步分析之前使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验