Suppr超能文献

胸部 X 光诊断质量评估:需要多少像素级监督?

Chest X-Ray Diagnostic Quality Assessment: How Much Is Pixel-Wise Supervision Needed?

出版信息

IEEE Trans Med Imaging. 2022 Jul;41(7):1711-1723. doi: 10.1109/TMI.2022.3149171. Epub 2022 Jun 30.

Abstract

Chest X-ray is an important imaging method for the diagnosis of chest diseases. Chest radiograph diagnostic quality assessment is vital for the diagnosis of the disease because unqualified radiographs have negative impacts on doctors' diagnosis and thus increase the burden on patients due to the re-acquirement of the radiographs. So far no algorithms and public data sets have been developed for chest radiograph diagnostic quality assessment. Towards effective chest X-ray diagnostic quality assessment, we analyze the image characteristics of four main chest radiograph diagnostic quality issues, i.e. Scapula Overlapping Lung, Artifact, Lung Field Loss, and Clavicle Unflatness. Our experiments show that general image classification methods are not competent for the task because the detailed information used for quality assessment by radiologists cannot be fully exploited by deep CNNs and image-level annotations. Then we propose to leverage a multi-label semantic segmentation framework to find the problematic regions, and then classify the quality issues based on the results of segmentation. However, subsequent classification is often negatively affected by certain small segmentation errors. Therefore, we propose to estimate a distance map that measures the distance from a pixel to its nearest segment, and use it to force the prediction of semantic segmentation more holistic and suitable for classification. Extensive experiments validate the effectiveness of our semantic-segmentation-based solution for chest X-ray diagnostic quality assessment. However, general segmentation-based algorithms requires fine pixel-wise annotations in the era of deep learning. In order to reduce reliance on fine annotations and further validate how important pixel-wise annotations are, weak supervision for segmentation is applied, and demonstrates its ability close to that of full supervision. Finally, we present ChestX-rayQuality, a chest radiograph data set, which comprises 480 frontal-view chest radiographs with semantic segmentation annotations and four labels of quality issue. Also, other 1212 chest radiographs with limited annotations are imported to validate our algorithms and arguments on larger data set. These two data set will be made publicly available.

摘要

胸部 X 射线是诊断胸部疾病的重要影像学方法。胸部 X 射线诊断质量评估对于疾病的诊断至关重要,因为不合格的 X 射线片会对医生的诊断产生负面影响,从而增加患者的负担,因为需要重新获取 X 射线片。到目前为止,还没有针对胸部 X 射线诊断质量评估的算法和公共数据集。为了进行有效的胸部 X 射线诊断质量评估,我们分析了四个主要的胸部 X 射线诊断质量问题的图像特征,即肩胛骨重叠肺、伪影、肺野丢失和锁骨不平坦。我们的实验表明,一般的图像分类方法并不胜任这项任务,因为放射科医生用于质量评估的详细信息不能被深度卷积神经网络和图像级注释充分利用。然后,我们提出利用多标签语义分割框架来找到有问题的区域,然后根据分割的结果对质量问题进行分类。然而,后续的分类通常会受到某些小的分割错误的负面影响。因此,我们提出估计一个距离图,该距离图测量像素与其最近段之间的距离,并使用该距离图来迫使语义分割的预测更加整体和适合分类。广泛的实验验证了我们基于语义分割的胸部 X 射线诊断质量评估解决方案的有效性。然而,在深度学习时代,基于一般分割的算法需要精细的像素级注释。为了减少对精细注释的依赖,并进一步验证像素级注释的重要性,我们应用了弱监督分割,并证明了它在性能上接近全监督的水平。最后,我们提出了 ChestX-rayQuality,这是一个胸部 X 射线数据集,它包含了 480 张正面视图的胸部 X 射线片,以及语义分割注释和四个质量问题标签。此外,还导入了 1212 张带有有限注释的胸部 X 射线片,以验证我们在更大数据集上的算法和论点。这两个数据集将公开发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验