Department of Biomedical Engineering, King's College London, London, UK.
Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Cancer Imaging, King's College London, London, UK.
Med Image Anal. 2019 Apr;53:26-38. doi: 10.1016/j.media.2018.12.007. Epub 2019 Jan 9.
Machine learning approaches hold great potential for the automated detection of lung nodules on chest radiographs, but training algorithms requires very large amounts of manually annotated radiographs, which are difficult to obtain. The increasing availability of PACS (Picture Archiving and Communication System), is laying the technological foundations needed to make available large volumes of clinical data and images from hospital archives. Binary labels indicating whether a radiograph contains a pulmonary lesion can be extracted at scale, using natural language processing algorithms. In this study, we propose two novel neural networks for the detection of chest radiographs containing pulmonary lesions. Both architectures make use of a large number of weakly-labelled images combined with a smaller number of manually annotated x-rays. The annotated lesions are used during training to deliver a type of visual attention feedback informing the networks about their lesion localisation performance. The first architecture extracts saliency maps from high-level convolutional layers and compares the inferred position of a lesion against the true position when this information is available; a localisation error is then back-propagated along with the softmax classification error. The second approach consists of a recurrent attention model that learns to observe a short sequence of smaller image portions through reinforcement learning; the reward function penalises the exploration of areas, within an image, that are unlikely to contain nodules. Using a repository of over 430,000 historical chest radiographs, we present and discuss the proposed methods over related architectures that use either weakly-labelled or annotated images only.
机器学习方法在胸部 X 光片上自动检测肺结节方面具有巨大潜力,但训练算法需要非常大量的手动标注 X 光片,这很难获得。越来越多的 PACS(影像归档和通信系统)的使用,为利用医院档案中的大量临床数据和图像奠定了技术基础。使用自然语言处理算法,可以大规模提取二进制标签,指示 X 光片是否包含肺部病变。在这项研究中,我们提出了两种用于检测包含肺部病变的胸部 X 光片的新型神经网络。这两种架构都利用大量弱标注图像和少量手动标注 X 光片。在训练过程中,使用标注的病变来提供一种视觉注意力反馈,告知网络其病变定位性能。第一种架构从高级卷积层中提取显着图,并将推断出的病变位置与可用时的真实位置进行比较;然后沿着软最大分类错误向后传播局部化错误。第二种方法由一个递归注意力模型组成,该模型通过强化学习学习观察短序列的较小图像部分;奖励函数惩罚在图像内不太可能包含结节的区域的探索。我们使用超过 430,000 张历史胸部 X 光片的存储库,提出并讨论了与仅使用弱标注或标注图像的相关架构相比的建议方法。