Suppr超能文献

基于多通道深度学习模型的三维锥形束CT颅面图像错牙合分类

Malocclusion Classification on 3D Cone-Beam CT Craniofacial Images Using Multi-Channel Deep Learning Models.

作者信息

Kim Incheol, Misra Dharitri, Rodriguez Laritza, Gill Michael, Liberton Denise K, Almpani Konstantinia, Lee Janice S, Antani Sameer

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1294-1298. doi: 10.1109/EMBC44109.2020.9176672.

Abstract

Analyzing and interpreting cone-beam computed tomography (CBCT) images is a complicated and often time-consuming process. In this study, we present two different architectures of multi-channel deep learning (DL) models: "Ensemble" and "Synchronized multi-channel", to automatically identify and classify skeletal malocclusions from 3D CBCT craniofacial images. These multi-channel models combine three individual single-channel base models using a voting scheme and a two-step learning process, respectively, to simultaneously extract and learn a visual representation from three different directional views of 2D images generated from a single 3D CBCT image. We also employ a visualization method called "Class-selective Relevance Mapping" (CRM) to explain the learned behavior of our DL models by localizing and highlighting a discriminative area within an input image. Our multi-channel models achieve significantly better performance overall (accuracy exceeding 93%), compared to single-channel DL models that only take one specific directional view of 2D projected image as an input. In addition, CRM visually demonstrates that a DL model based on the sagittal-left view of 2D images outperforms those based on other directional 2D images.Clinical Relevance- the proposed method aims at assisting orthodontist to determine the best treatment path for the patient be it orthodontic or surgical treatment or a combination of both.

摘要

分析和解读锥形束计算机断层扫描(CBCT)图像是一个复杂且通常耗时的过程。在本研究中,我们提出了两种不同架构的多通道深度学习(DL)模型:“集成”和“同步多通道”,用于从3D CBCT颅面图像中自动识别和分类骨骼错颌畸形。这些多通道模型分别使用投票方案和两步学习过程来组合三个单独的单通道基础模型,以便从单个3D CBCT图像生成的2D图像的三个不同方向视图中同时提取并学习视觉表示。我们还采用了一种称为“类选择性相关映射”(CRM)的可视化方法,通过定位和突出显示输入图像中的判别区域来解释我们的DL模型的学习行为。与仅将2D投影图像的一个特定方向视图作为输入的单通道DL模型相比,我们的多通道模型总体上实现了显著更好的性能(准确率超过93%)。此外,CRM直观地表明,基于2D图像矢状面左视图的DL模型优于基于其他方向2D图像的模型。临床相关性——所提出的方法旨在帮助正畸医生为患者确定最佳治疗路径,无论是正畸治疗、手术治疗还是两者结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验