Suppr超能文献

基于立体眼底图像的青光眼自动检测

Automatic Glaucoma Detection from Stereo Fundus Images.

作者信息

Ong Ee Ping, Cheng Jun, Wong Damon W K, Tay Elton L T, Teo Hwei Yee, Grace Loo Rosalyn, Yip Leonard W L

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1540-1543. doi: 10.1109/EMBC44109.2020.9175923.

Abstract

This paper proposes a new method for automatic detection of glaucoma from stereo pair of fundus images. The basis for detecting glaucoma is using the optic cup-to-disc area ratio, where the surface area of the optic cup is segmented from the disparity map estimated from the stereo fundus image pair. More specifically, we first estimate the disparity map from the stereo image pair. Then, the optic disc is segmented from one of the stereo image. Based upon the location of the optic disc, we perform an active contour segmentation on the disparity map to segment the optic cup. Thereafter, we can compute the optic cup-to-disc area ratio by dividing the area (i.e. the total number of pixels) of the segmented optic cup region to that of the segmented optic disc region. Our experimental results using the available test dataset shows the efficacy of our proposed approach.

摘要

本文提出了一种从眼底图像立体对中自动检测青光眼的新方法。检测青光眼的依据是使用视杯与视盘面积比,其中视杯的表面积是从立体眼底图像对估计的视差图中分割出来的。更具体地说,我们首先从立体图像对中估计视差图。然后,从立体图像之一中分割出视盘。基于视盘的位置,我们对视差图进行主动轮廓分割以分割视杯。此后,我们可以通过将分割出的视杯区域的面积(即像素总数)除以分割出的视盘区域的面积来计算视杯与视盘面积比。我们使用可用测试数据集的实验结果表明了我们提出的方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验