Wang Yiying, Yang Tao, Huang Weimin
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1572-1575. doi: 10.1109/EMBC44109.2020.9176040.
The limited-angle cone-beam Computed Tomography (CT) is often used in C-arm for clinical diagnosis with the advantages of cheap cost and radiation dose reduction. However, due to incomplete projection data, the 3-dimensional CT images reconstructed by conventional methods, such as the Feldkamp, Davis and Kres (FDK) algorithm [1], suffer from heavy artifacts and missing features. In this paper, we propose a novel pipeline of neural networks jointly by a FDK-based neural network revisited from Würfl et al.'s work [2] and an image domain U-Net to enhance the 3-dimensional reconstruction quality for limited projection sinogram less than 180 degrees, i.e. 145 degrees in our work. Experimental results, on simulated projections of real-scan CTs, show that the proposed pipeline can reduce some of the major artifacts caused by the limited views while keep the key features, with a 16.60% improvement than Würfl et al.'s work on peak signal-to-noise ratio.
有限角度锥束计算机断层扫描(CT)常用于C形臂中进行临床诊断,具有成本低廉和辐射剂量降低的优点。然而,由于投影数据不完整,通过传统方法(如费尔德坎普、戴维斯和克雷斯(FDK)算法[1])重建的三维CT图像会出现严重伪影和特征缺失。在本文中,我们提出了一种新颖的神经网络管道,该管道由基于FDK的神经网络(重新审视了维尔夫等人的工作[2])和图像域U-Net共同组成,以提高小于180度(在我们的工作中为145度)的有限投影正弦图的三维重建质量。在真实扫描CT的模拟投影上的实验结果表明,所提出的管道可以减少有限视角引起的一些主要伪影,同时保留关键特征,在峰值信噪比方面比维尔夫等人的工作提高了16.60%。