Amer Alyaa, Ye Xujiong, Zolgharni Massoud, Janan Faraz
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2019-2022. doi: 10.1109/EMBC44109.2020.9175436.
Echocardiography is the modality of choice for the assessment of left ventricle function. Left ventricle is responsible for pumping blood rich in oxygen to all body parts. Segmentation of this chamber from echocardiographic images is a challenging task, due to the ambiguous boundary and inhomogeneous intensity distribution. In this paper we propose a novel deep learning model named ResDUnet. The model is based on U-net incorporated with dilated convolution, where residual blocks are employed instead of the basic U-net units to ease the training process. Each block is enriched with squeeze and excitation unit for channel-wise attention and adaptive feature re-calibration. To tackle the problem of left ventricle shape and size variability, we chose to enrich the process of feature concatenation in U-net by integrating feature maps generated by cascaded dilation. Cascaded dilation broadens the receptive field size in comparison with traditional convolution, which allows the generation of multi-scale information which in turn results in a more robust segmentation. Performance measures were evaluated on a publicly available dataset of 500 patients with large variability in terms of quality and patients pathology. The proposed model shows a dice similarity increase of 8.4% when compared to deeplabv3 and 1.2% when compared to the basic U-net architecture. Experimental results demonstrate the potential use in clinical domain.
超声心动图是评估左心室功能的首选方式。左心室负责将富含氧气的血液泵送到身体各个部位。由于边界模糊和强度分布不均匀,从超声心动图图像中分割出这个腔室是一项具有挑战性的任务。在本文中,我们提出了一种名为ResDUnet的新型深度学习模型。该模型基于结合了扩张卷积的U-net,其中使用残差块代替基本的U-net单元以简化训练过程。每个块都通过挤压和激励单元进行了增强,以实现通道注意力和自适应特征重新校准。为了解决左心室形状和大小变化的问题,我们选择通过整合级联扩张生成的特征图来丰富U-net中的特征拼接过程。与传统卷积相比,级联扩张拓宽了感受野大小,这允许生成多尺度信息,进而导致更稳健的分割。在一个包含500名患者的公开可用数据集上评估了性能指标,这些患者在质量和病理方面存在很大差异。与deeplabv3相比,所提出的模型的骰子相似性增加了8.4%,与基本U-net架构相比增加了1.2%。实验结果证明了其在临床领域的潜在用途。