Aguado Ainhoa M, Jimenez-Perez Guillermo, Chowdhury Devyani, Prats-Valero Josa, Sánchez-Martínez Sergio, Hoodbhoy Zahra, Mohsin Shazia, Castellani Roberta, Testa Lea, Crispi Fàtima, Bijnens Bart, Hasan Babar, Bernardino Gabriel
BCN-MedTech, DTIC, Universitat Pompeu Fabra, Barcelona, Spain.
Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
Front Digit Health. 2024 Oct 16;6:1455767. doi: 10.3389/fdgth.2024.1455767. eCollection 2024.
Extraction of Doppler-based measurements from feto-placental Doppler images is crucial in identifying vulnerable new-borns prenatally. However, this process is time-consuming, operator dependent, and prone to errors.
To address this, our study introduces an artificial intelligence (AI) enabled workflow for automating feto-placental Doppler measurements from four sites (i.e., Umbilical Artery (UA), Middle Cerebral Artery (MCA), Aortic Isthmus (AoI) and Left Ventricular Inflow and Outflow (LVIO)), involving classification and waveform delineation tasks. Derived from data from a low- and middle-income country, our approach's versatility was tested and validated using a dataset from a high-income country, showcasing its potential for standardized and accurate analysis across varied healthcare settings.
The classification of Doppler views was approached through three distinct blocks: (i) a Doppler velocity amplitude-based model with an accuracy of 94%, (ii) two Convolutional Neural Networks (CNN) with accuracies of 89.2% and 67.3%, and (iii) Doppler view- and dataset-dependent confidence models to detect misclassifications with an accuracy higher than 85%. The extraction of Doppler indices utilized Doppler-view dependent CNNs coupled with post-processing techniques. Results yielded a mean absolute percentage error of 6.1 ± 4.9% ( = 682), 1.8 ± 1.5% ( = 1,480), 4.7 ± 4.0% ( = 717), 3.5 ± 3.1% ( = 1,318) for the magnitude location of the systolic peak in LVIO, UA, AoI and MCA views, respectively.
The developed models proved to be highly accurate in classifying Doppler views and extracting essential measurements from Doppler images. The integration of this AI-enabled workflow holds significant promise in reducing the manual workload and enhancing the efficiency of feto-placental Doppler image analysis, even for non-trained readers.
从胎儿 - 胎盘多普勒图像中提取基于多普勒的测量值对于产前识别脆弱新生儿至关重要。然而,这个过程耗时、依赖操作人员且容易出错。
为了解决这个问题,我们的研究引入了一种基于人工智能(AI)的工作流程,用于自动从四个部位(即脐动脉(UA)、大脑中动脉(MCA)、主动脉峡部(AoI)和左心室流入和流出(LVIO))进行胎儿 - 胎盘多普勒测量,涉及分类和波形描绘任务。我们的方法源自低收入和中等收入国家的数据,并使用高收入国家的数据集进行了测试和验证,展示了其在不同医疗环境中进行标准化和准确分析的潜力。
多普勒视图的分类通过三个不同的模块进行:(i)基于多普勒速度幅度的模型,准确率为94%;(ii)两个卷积神经网络(CNN),准确率分别为89.2%和67.3%;(iii)依赖于多普勒视图和数据集的置信模型,用于检测误分类,准确率高于85%。多普勒指数的提取利用了依赖于多普勒视图的CNN以及后处理技术。结果显示,LVIO、UA、AoI和MCA视图中收缩期峰值幅度位置的平均绝对百分比误差分别为6.1±4.9%(n = 682)、1.8±1.5%(n = 1,480)、4.7±4.0%(n = 717)、3.5±3.1%(n = 1,318)。
所开发的模型在分类多普勒视图和从多普勒图像中提取基本测量值方面被证明具有高度准确性。这种基于人工智能的工作流程的整合在减少人工工作量和提高胎儿 - 胎盘多普勒图像分析效率方面具有重大前景,即使对于未经培训的读者也是如此。