The School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, Shanghai, China.
Med Phys. 2022 Jun;49(6):3900-3913. doi: 10.1002/mp.15613. Epub 2022 Mar 30.
Ventricular segmentation is of great importance for the heart condition monitoring. However, manual segmentation is time-consuming, cumbersome, and subjective. Many segmentation methods perform poorly due to the complex structure and uncertain shape of the right ventricle, so we combine deep learning to achieve automatic segmentation.
This paper proposed a method named U-Snake network which is based on the improvement of deep snake together with level set to segment the right ventricular in the MR images. U-snake aggregates the information of each receptive field which is learned by circular convolution of multiple dilation rates. At the same time, we also added dice loss functions and transferred the result of U-Snake to the level set so as to further enhance the effect of small object segmentation. Our method is tested on the test 1 and test 2 datasets in the right ventricular segmentation challenge (RVSC), which shows the effectiveness.
The experiment showed that we have obtained good result in the RVSC. The highest segmentation accuracy on the right ventricular test set 2 reached a dice coefficient of 0.911, and the segmentation speed reached 5 fps.
Our method, a new deep learning network named U-snake, has surpassed the previous excellent ventricular segmentation method based on mathematical theory and other classical deep learning methods, such as Residual U-net, Inception CNN, and Dilated CNN. However, it can only be used as an auxiliary tool instead of replacing the work of human beings.
心室分割对于心脏状况监测具有重要意义。然而,手动分割既耗时、繁琐又具有主观性。由于右心室的复杂结构和不确定形状,许多分割方法的性能较差,因此我们结合深度学习来实现自动分割。
本文提出了一种名为 U-Snake 网络的方法,该方法基于深度蛇的改进,结合水平集来分割磁共振图像中的右心室。U-snake 聚合了由多个扩张率的圆形卷积学习到的每个感受野的信息。同时,我们还添加了骰子损失函数,并将 U-Snake 的结果转换到水平集中,以进一步增强小物体分割的效果。我们的方法在右心室分割挑战 (RVSC) 的测试 1 和测试 2 数据集上进行了测试,结果表明该方法是有效的。
实验表明,我们在 RVSC 中取得了良好的效果。在右心室测试集 2 上的最高分割精度达到了骰子系数 0.911,分割速度达到了 5 fps。
我们的方法,一种名为 U-snake 的新的深度学习网络,已经超越了以前基于数学理论和其他经典深度学习方法(如残差 U-net、Inception CNN 和 Dilated CNN)的优秀心室分割方法。然而,它只能作为辅助工具,不能代替人类的工作。